Suppr超能文献

独立深度学习与专家诊断胸部计算机断层扫描肺癌:系统评价。

Standalone deep learning versus experts for diagnosis lung cancer on chest computed tomography: a systematic review.

机构信息

Institute of Biophotonics, National Yang-Ming Chiao Tung University, Taipei, Taiwan.

School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan.

出版信息

Eur Radiol. 2024 Nov;34(11):7397-7407. doi: 10.1007/s00330-024-10804-6. Epub 2024 May 22.

Abstract

PURPOSE

To compare the diagnostic performance of standalone deep learning (DL) algorithms and human experts in lung cancer detection on chest computed tomography (CT) scans.

MATERIALS AND METHODS

This study searched for studies on PubMed, Embase, and Web of Science from their inception until November 2023. We focused on adult lung cancer patients and compared the efficacy of DL algorithms and expert radiologists in disease diagnosis on CT scans. Quality assessment was performed using QUADAS-2, QUADAS-C, and CLAIM. Bivariate random-effects and subgroup analyses were performed for tasks (malignancy classification vs invasiveness classification), imaging modalities (CT vs low-dose CT [LDCT] vs high-resolution CT), study region, software used, and publication year.

RESULTS

We included 20 studies on various aspects of lung cancer diagnosis on CT scans. Quantitatively, DL algorithms exhibited superior sensitivity (82%) and specificity (75%) compared to human experts (sensitivity 81%, specificity 69%). However, the difference in specificity was statistically significant, whereas the difference in sensitivity was not statistically significant. The DL algorithms' performance varied across different imaging modalities and tasks, demonstrating the need for tailored optimization of DL algorithms. Notably, DL algorithms matched experts in sensitivity on standard CT, surpassing them in specificity, but showed higher sensitivity with lower specificity on LDCT scans.

CONCLUSION

DL algorithms demonstrated improved accuracy over human readers in malignancy and invasiveness classification on CT scans. However, their performance varies by imaging modality, underlining the importance of continued research to fully assess DL algorithms' diagnostic effectiveness in lung cancer.

CLINICAL RELEVANCE STATEMENT

DL algorithms have the potential to refine lung cancer diagnosis on CT, matching human sensitivity and surpassing in specificity. These findings call for further DL optimization across imaging modalities, aiming to advance clinical diagnostics and patient outcomes.

KEY POINTS

Lung cancer diagnosis by CT is challenging and can be improved with AI integration. DL shows higher accuracy in lung cancer detection on CT than human experts. Enhanced DL accuracy could lead to improved lung cancer diagnosis and outcomes.

摘要

目的

比较基于深度学习(DL)的独立算法和人类专家在胸部 CT 扫描肺癌检测中的诊断性能。

材料与方法

本研究在 PubMed、Embase 和 Web of Science 上进行了检索,检索时间从建库至 2023 年 11 月。我们关注的是成年肺癌患者,并比较了 DL 算法和放射科专家在 CT 扫描上对疾病诊断的疗效。采用 QUADAS-2、QUADAS-C 和 CLAIM 对质量进行评估。对任务(良恶性分类与侵袭性分类)、成像方式(CT、低剂量 CT[LDCT]、高分辨率 CT)、研究区域、使用的软件和发表年份进行双变量随机效应和亚组分析。

结果

共纳入了 20 项关于 CT 扫描在肺癌诊断各方面的研究。定量结果显示,DL 算法的敏感性(82%)和特异性(75%)均优于人类专家(敏感性 81%,特异性 69%)。但特异性的差异具有统计学意义,而敏感性的差异无统计学意义。DL 算法的性能在不同成像方式和任务中存在差异,表明需要对 DL 算法进行有针对性的优化。值得注意的是,在标准 CT 上,DL 算法的敏感性与专家相当,特异性优于专家,但在 LDCT 扫描上,敏感性较高而特异性较低。

结论

与人类读者相比,DL 算法在 CT 扫描的良恶性和侵袭性分类中提高了准确性。但它们的性能因成像方式而异,这强调了需要进一步研究以全面评估 DL 算法在肺癌诊断中的诊断效果。

临床相关性声明

DL 算法在 CT 扫描肺癌诊断中具有提高准确性的潜力,可与人类敏感性相匹配,并在特异性上超越。这些发现呼吁在各种成像方式中进一步优化 DL,以提高临床诊断和患者结局。

要点

CT 扫描下的肺癌诊断具有挑战性,可通过人工智能集成来改善。DL 在 CT 扫描肺癌检测中的准确性高于人类专家。增强的 DL 准确性可能会改善肺癌诊断和结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90bb/11519296/633edc5d5c5c/330_2024_10804_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验