Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055, China.
Stem Cell Res Ther. 2021 Jun 10;12(1):339. doi: 10.1186/s13287-021-02412-8.
The spatiotemporal regulation of essential genes is crucial for controlling the growth and differentiation of cells in a precise manner during regeneration. Recently, optogenetics was considered as a potent technology for sophisticated regulation of target genes, which might be a promising tool for regenerative medicine. In this study, we used an optogenetic control system to precisely regulate the expression of Lhx8 to promote efficient bone regeneration.
Quantitative real-time PCR and western blotting were used to detect the expression of Lhx8 and osteogenic marker genes. Alkaline phosphatase staining and alizarin red staining were used to detect alkaline phosphatase activity and calcium nodules. A customized optogenetic expression system was constructed to regulate Lhx8, of which the expression was activated in blue light but not in dark. We also used a critical calvarial defect model for the analysis of bone regeneration in vivo. Moreover, micro-computed tomography (micro-CT), three-dimensional reconstruction, quantitative bone measurement, and histological and immunohistochemistry analysis were performed to investigate the formation of new bone in vivo.
During the osteogenic differentiation of BMSCs, the expression levels of Lhx8 increased initially but then decreased thereafter. Lhx8 promoted the early proliferation of BMSCs but inhibited subsequent osteogenic differentiation. The optogenetic activation of Lhx8 in BMSCs in the early stages of differentiation by blue light stimulation led to a significant increase in cell proliferation, thus allowing a sufficient number of differentiating BMSCs to enter the later osteogenic differentiation stage. Analysis of the critical calvarial defect model revealed that the pulsed optogenetic activation of Lhx8 in transplanted BMSCs over a 5-day period led to a significant increase in the generation of bone in vivo.
Lhx8 plays a critical role in balancing proliferation and osteogenic differentiation in BMSCs. The optogenetic activation of Lhx8 expression at early stage of BMSCs differentiation led to better osteogenesis, which would be a promising strategy for precise bone regeneration.
在再生过程中,精确控制必需基因的时空表达对于细胞的生长和分化至关重要。最近,光遗传学被认为是一种对靶基因进行精细调控的强大技术,它可能是再生医学的一种有前途的工具。在这项研究中,我们使用光遗传学控制系统来精确调控 Lhx8 的表达,以促进有效的骨再生。
使用定量实时 PCR 和 Western blot 检测 Lhx8 和成骨标记基因的表达。碱性磷酸酶染色和茜素红染色用于检测碱性磷酸酶活性和钙结节。构建了定制的光遗传学表达系统来调节 Lhx8 的表达,其表达在蓝光下激活,但在黑暗中不激活。我们还使用了临界颅骨缺损模型来分析体内的骨再生。此外,进行了微计算机断层扫描(micro-CT)、三维重建、定量骨测量以及体内新骨形成的组织学和免疫组织化学分析。
在 BMSCs 的成骨分化过程中,Lhx8 的表达水平最初增加,然后随后降低。Lhx8 促进 BMSCs 的早期增殖,但抑制随后的成骨分化。通过蓝光刺激在 BMSCs 分化的早期阶段光遗传学激活 Lhx8 导致细胞增殖显著增加,从而使足够数量的分化 BMSCs进入后期成骨分化阶段。对临界颅骨缺损模型的分析表明,在移植的 BMSCs 中,对 Lhx8 进行 5 天的脉冲光遗传学激活导致体内骨生成显著增加。
Lhx8 在 BMSCs 的增殖和成骨分化之间起着关键的平衡作用。在 BMSCs 分化的早期阶段光遗传学激活 Lhx8 的表达导致更好的成骨,这可能是精确骨再生的一种有前途的策略。