State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Quality Control of Jiangsu Province, Wuxi 214122, China.
State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Quality Control of Jiangsu Province, Wuxi 214122, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.
Food Res Int. 2021 Jul;145:110409. doi: 10.1016/j.foodres.2021.110409. Epub 2021 May 11.
Presently, because of the extraordinary roles and potential applications, rare sugars turn into a focus point for countless researchers in the field of carbohydrates. l-ribose and l-ribulose are rare sugars and isomers of each other. This aldo and ketopentose are expensive but can be utilized as an antecedent for the manufacturing of various rare sugars and l-nucleoside analogue. The bioconversion approach turns into an excellent alternative method to l-ribulose and l-ribose production, as compared to the complex and lengthy chemical methods. The basic purpose of this research was to describe the importance of rare sugars in various fields and their easy production by using enzymatic methods. l-Ribose isomerase (L-RI) is an enzyme discovered by Tsuyoshi Shimonishi and Ken Izumori in 1996 from Acinetobacter sp. strain DL-28. L-RI structure was cupin-type-β-barrel shaped with a catalytic site between two β-sheets surrounded by metal ions. The crystal structures of the L-RI showed that it contains a homotetramer structure. Current review have concentrated on the sources, characteristics, applications, conclusions and future prospects including the potentials of l-ribose isomerase for the commercial production of l-ribose and l-ribulose. The MmL-RIse and CrL-RIse have the potential to produce the l-ribulose up to 32% and 31%, respectively. The CrL-RIse is highly stable as compared to other L-RIs. The results explained that the L-RIs have great potential in the production of rare sugars especially, l-ribose and l-ribulose, while the immobilization technique can enhance its functionality and properties. The present study precises the applications of L-RIs acquired from various sources for l-ribose and l-ribulose production.
目前,由于其特殊的角色和潜在的应用,稀有糖成为无数碳水化合物领域研究人员关注的焦点。L-核糖和 L-核酮糖是稀有糖,互为同分异构体。这种醛和酮戊糖虽然昂贵,但可以作为制造各种稀有糖和 L-核苷类似物的前体。与复杂而冗长的化学方法相比,生物转化方法成为 L-核酮糖和 L-核糖生产的极好替代方法。本研究的基本目的是描述稀有糖在各个领域的重要性及其通过酶法生产的简便性。L-核糖异构酶(L-RI)是 Tsuyoshi Shimonishi 和 Ken Izumori 于 1996 年从不动杆菌属菌株 DL-28 中发现的一种酶。L-RI 的结构为杯状-β-桶形,催化位点位于两个β-片层之间,周围有金属离子。L-RI 的晶体结构表明它含有同源四聚体结构。目前的综述集中在来源、特性、应用、结论和未来展望,包括 L-核糖异构酶在 L-核糖和 L-核酮糖商业生产中的潜力。MmL-RIse 和 CrL-RIse 分别有潜力生产高达 32%和 31%的 L-核酮糖。与其他 L-RIs 相比,CrL-RIse 高度稳定。结果表明,L-RIs 在稀有糖,特别是 L-核糖和 L-核酮糖的生产中具有巨大的潜力,而固定化技术可以增强其功能和特性。本研究精确阐述了从各种来源获得的 L-RIs 在 L-核糖和 L-核酮糖生产中的应用。