Cardiovascular Biology and Biomechanics Laboratory, Cardiovascular Division, University of Nebraska Medical Center, 982265 Nebraska Medical Center, Omaha, NE, 68198, USA.
Department of Cardiology, Teikyo University Hospital, Tokyo, Japan.
Sci Rep. 2021 Jun 10;11(1):12252. doi: 10.1038/s41598-021-91458-y.
The structural morphology of coronary stents (e.g. stent expansion, lumen scaffolding, strut apposition, tissue protrusion, side branch jailing, strut fracture), and the local hemodynamic environment after stent deployment are key determinants of procedural success and subsequent clinical outcomes. High-resolution intracoronary imaging has the potential to enable the geometrically accurate three-dimensional (3D) reconstruction of coronary stents. The aim of this work was to present a novel algorithm for 3D stent reconstruction of coronary artery stents based on optical coherence tomography (OCT) and angiography, and test experimentally its accuracy, reproducibility, clinical feasibility, and ability to perform computational fluid dynamics (CFD) studies. Our method has the following steps: 3D lumen reconstruction based on OCT and angiography, stent strut segmentation in OCT images, packaging, rotation and straightening of the segmented struts, planar unrolling of the segmented struts, planar stent wireframe reconstruction, rolling back of the planar stent wireframe to the 3D reconstructed lumen, and final stent volume reconstruction. We tested the accuracy and reproducibility of our method in stented patient-specific silicone models using micro-computed tomography (μCT) and stereoscopy as references. The clinical feasibility and CFD studies were performed in clinically stented coronary bifurcations. The experimental and clinical studies showed that our algorithm (1) can reproduce the complex spatial stent configuration with high precision and reproducibility, (2) is feasible in 3D reconstructing stents deployed in bifurcations, and (3) enables CFD studies to assess the local hemodynamic environment within the stent. Notably, the high accuracy of our algorithm was consistent across different stent designs and diameters. Our method coupled with patient-specific CFD studies can lay the ground for optimization of stenting procedures, patient-specific computational stenting simulations, and research and development of new stent scaffolds and stenting techniques.
冠状动脉支架的结构形态(例如支架扩张、管腔支撑、支柱贴合、组织突出、分支监禁、支柱断裂)以及支架置入后的局部血液动力学环境是手术成功和随后临床结果的关键决定因素。高分辨率冠状动脉内成像有可能实现冠状动脉支架的精确三维(3D)重建。本工作旨在提出一种基于光学相干断层扫描(OCT)和血管造影的冠状动脉支架 3D 重建的新算法,并对其准确性、可重复性、临床可行性和进行计算流体动力学(CFD)研究的能力进行实验测试。我们的方法有以下步骤:基于 OCT 和血管造影的 3D 管腔重建、OCT 图像中的支架支柱分割、包装、分割支柱的旋转和拉直、分割支柱的平面展开、分割支柱的平面支架线框重建、平面支架线框回滚到 3D 重建的管腔、以及最终的支架体积重建。我们使用微计算机断层扫描(μCT)和立体学作为参考,在支架植入的患者特定的硅模型中测试了我们方法的准确性和可重复性。临床可行性和 CFD 研究在临床上支架植入的冠状动脉分叉处进行。实验和临床研究表明,我们的算法(1)可以高精度和可重复性地再现复杂的空间支架结构,(2)在分叉处 3D 重建支架是可行的,(3)能够进行 CFD 研究来评估支架内的局部血液动力学环境。值得注意的是,我们算法的高精度在不同的支架设计和直径之间是一致的。我们的方法结合患者特异性 CFD 研究,可以为支架置入程序的优化、患者特异性计算支架模拟以及新的支架支架和支架技术的研发奠定基础。