Suppr超能文献

基于深度学习的 A-B 嵌段共聚物相分离结构截面图像的 Flory-Huggins 参数估计。

Deep learning-based estimation of Flory-Huggins parameter of A-B block copolymers from cross-sectional images of phase-separated structures.

机构信息

Department of Applied Physics, National Defense Academy, 1-10-20 Hashirimizu, Yokosuka, 239-8686, Japan.

Research Center for Computational Design of Advanced Functional Materials, National Institute of Advanced Industrial Science and Technology, Central 2, 1-1-1, Umezono, Tsukuba, Ibaraki, 305-8568, Japan.

出版信息

Sci Rep. 2021 Jun 10;11(1):12322. doi: 10.1038/s41598-021-91761-8.

Abstract

In this study, deep learning (DL)-based estimation of the Flory-Huggins χ parameter of A-B diblock copolymers from two-dimensional cross-sectional images of three-dimensional (3D) phase-separated structures were investigated. 3D structures with random networks of phase-separated domains were generated from real-space self-consistent field simulations in the 25-40 χN range for chain lengths (N) of 20 and 40. To confirm that the prepared data can be discriminated using DL, image classification was performed using the VGG-16 network. We comprehensively investigated the performances of the learned networks in the regression problem. The generalization ability was evaluated from independent images with the unlearned χN. We found that, except for large χN values, the standard deviation values were approximately 0.1 and 0.5 for A-component fractions of 0.2 and 0.35, respectively. The images for larger χN values were more difficult to distinguish. In addition, the learning performances for the 4-class problem were comparable to those for the 8-class problem, except when the χN values were large. This information is useful for the analysis of real experimental image data, where the variation of samples is limited.

摘要

在这项研究中,我们研究了基于深度学习(DL)的方法,通过对三维(3D)相分离结构的二维横截面图像,来估计 A-B 两嵌段共聚物的 Flory-Huggins χ 参数。使用实空间自洽场模拟,在 25-40 χN 范围内,为链长(N)为 20 和 40 的聚合物生成了具有随机相分离域网络的 3D 结构。为了确认可以使用 DL 对准备好的数据进行区分,使用 VGG-16 网络进行图像分类。我们全面研究了学习网络在回归问题中的性能。通过使用未学习的 χN 的独立图像,评估了其泛化能力。我们发现,除了大的 χN 值之外,当 A 组分分数分别为 0.2 和 0.35 时,标准偏差值分别约为 0.1 和 0.5。对于较大的 χN 值的图像,更难以区分。此外,除了 χN 值较大时,4 类问题的学习性能与 8 类问题的学习性能相当。这些信息对于分析实际实验图像数据很有用,因为样品的变化有限。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdc1/8192782/72421bc2c815/41598_2021_91761_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验