Suppr超能文献

通过解析和靶向个性化蛋白质网络改变克服黑色素瘤对BRAF抑制的耐药性。

Overcoming resistance to BRAF inhibition in melanoma by deciphering and targeting personalized protein network alterations.

作者信息

Vasudevan S, Flashner-Abramson E, Alkhatib Heba, Roy Chowdhury Sangita, Adejumobi I A, Vilenski D, Stefansky S, Rubinstein A M, Kravchenko-Balasha N

机构信息

The Institute of Biomedical and Oral Research, Hebrew University of Jerusalem, Jerusalem, Israel.

出版信息

NPJ Precis Oncol. 2021 Jun 10;5(1):50. doi: 10.1038/s41698-021-00190-3.

Abstract

BRAF melanoma patients, despite initially responding to the clinically prescribed anti-BRAF therapy, often relapse, and their tumors develop drug resistance. While it is widely accepted that these tumors are originally driven by the BRAF mutation, they often eventually diverge and become supported by various signaling networks. Therefore, patient-specific altered signaling signatures should be deciphered and treated individually. In this study, we design individualized melanoma combination treatments based on personalized network alterations. Using an information-theoretic approach, we compute high-resolution patient-specific altered signaling signatures. These altered signaling signatures each consist of several co-expressed subnetworks, which should all be targeted to optimally inhibit the entire altered signaling flux. Based on these data, we design smart, personalized drug combinations, often consisting of FDA-approved drugs. We validate our approach in vitro and in vivo showing that individualized drug combinations that are rationally based on patient-specific altered signaling signatures are more efficient than the clinically used anti-BRAF or BRAF/MEK targeted therapy. Furthermore, these drug combinations are highly selective, as a drug combination efficient for one BRAF tumor is significantly less efficient for another, and vice versa. The approach presented herein can be broadly applicable to aid clinicians to rationally design patient-specific anti-melanoma drug combinations.

摘要

BRAF黑色素瘤患者尽管最初对临床规定的抗BRAF治疗有反应,但经常复发,并且他们的肿瘤会产生耐药性。虽然人们普遍认为这些肿瘤最初是由BRAF突变驱动的,但它们最终往往会发生分化,并由各种信号网络支持。因此,应该解读患者特异性的改变信号特征并进行个体化治疗。在本研究中,我们基于个性化的网络改变设计个体化的黑色素瘤联合治疗方案。使用信息论方法,我们计算高分辨率的患者特异性改变信号特征。这些改变的信号特征每个都由几个共表达的子网组成,所有这些子网都应被靶向以最佳地抑制整个改变的信号通量。基于这些数据,我们设计智能、个性化的药物组合,通常由FDA批准的药物组成。我们在体外和体内验证了我们的方法,表明基于患者特异性改变信号特征合理设计的个体化药物组合比临床使用的抗BRAF或BRAF/MEK靶向治疗更有效。此外,这些药物组合具有高度选择性,因为对一种BRAF肿瘤有效的药物组合对另一种肿瘤的效果明显较差,反之亦然。本文提出的方法可广泛应用,以帮助临床医生合理设计患者特异性的抗黑色素瘤药物组合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f4a/8192524/2a84f944182e/41698_2021_190_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验