Suppr超能文献

多组学单细胞快照揭示了黑色素瘤细胞系中对药物耐受性的多个独立轨迹。

Multi-omic single-cell snapshots reveal multiple independent trajectories to drug tolerance in a melanoma cell line.

机构信息

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA.

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA.

出版信息

Nat Commun. 2020 May 11;11(1):2345. doi: 10.1038/s41467-020-15956-9.

Abstract

The determination of individual cell trajectories through a high-dimensional cell-state space is an outstanding challenge for understanding biological changes ranging from cellular differentiation to epigenetic responses of diseased cells upon drugging. We integrate experiments and theory to determine the trajectories that single BRAF mutant melanoma cancer cells take between drug-naive and drug-tolerant states. Although single-cell omics tools can yield snapshots of the cell-state landscape, the determination of individual cell trajectories through that space can be confounded by stochastic cell-state switching. We assayed for a panel of signaling, phenotypic, and metabolic regulators at points across 5 days of drug treatment to uncover a cell-state landscape with two paths connecting drug-naive and drug-tolerant states. The trajectory a given cell takes depends upon the drug-naive level of a lineage-restricted transcription factor. Each trajectory exhibits unique druggable susceptibilities, thus updating the paradigm of adaptive resistance development in an isogenic cell population.

摘要

通过高维细胞状态空间来确定单个细胞轨迹是理解从细胞分化到疾病细胞在药物作用下的表观遗传反应等生物学变化的一个突出挑战。我们整合了实验和理论,以确定单个 BRAF 突变黑色素瘤癌细胞在无药状态和耐药状态之间所走的轨迹。虽然单细胞组学工具可以提供细胞状态景观的快照,但通过该空间确定单个细胞轨迹可能会受到随机细胞状态转换的干扰。我们在 5 天的药物治疗过程中的各个时间点检测了一系列信号、表型和代谢调节剂,以揭示一个具有两条路径连接无药状态和耐药状态的细胞状态景观。给定细胞所走的轨迹取决于谱系限制转录因子的无药初始水平。每条轨迹都表现出独特的可药物治疗敏感性,从而更新了同基因细胞群体中适应性耐药发展的范例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e31/7214418/a66f7675cb7a/41467_2020_15956_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验