Suppr超能文献

使用单次拍摄探测器自动检测非增强 CT 上的脑转移瘤。

Automated detection of brain metastases on non-enhanced CT using single-shot detectors.

机构信息

Department of Radiology, The Graduate School of Medicine, University of Tokyo, 7‑3‑1 Hongo, Bunkyo‑ku, Tokyo, 113‑8655, Japan.

Department of Radiology, Teikyo University Hospital, Mizonokuchi, 5-1-1 Futago, Takatsu-ku, Kawasaki, Kanagawa, 213-8507, Japan.

出版信息

Neuroradiology. 2021 Dec;63(12):1995-2004. doi: 10.1007/s00234-021-02743-6. Epub 2021 Jun 10.

Abstract

PURPOSE

To develop and investigate deep learning-based detectors for brain metastases detection on non-enhanced (NE) CT.

METHODS

The study included 116 NECTs from 116 patients (81 men, age 66.5 ± 10.6 years) to train and test single-shot detector (SSD) models using 89 and 27 cases, respectively. The annotation was performed by three radiologists using bounding-boxes defined on contrast-enhanced CT (CECT) images. NECTs were coregistered and resliced to CECTs. The detection performance was evaluated at the SSD's 50% confidence threshold using sensitivity, positive-predictive value (PPV), and the false-positive rate per scan (FPR). For false negatives and true positives, binary logistic regression was used to examine the possible contributing factors.

RESULTS

For lesions 6 mm or larger, the SSD achieved a sensitivity of 35.4% (95% confidence interval (CI): [32.3%, 33.5%]); 51/144) with an FPR of 14.9 (95% CI [12.4, 13.9]). The overall sensitivity was 23.8% (95% CI: [21.3%, 22.8%]; 55/231) and PPV was 19.1% (95% CI: [18.5%, 20.4%]; 98/ of 513), with an FPR of 15.4 (95% CI [12.9, 14.5]). Ninety-five percent of the lesions that SSD failed to detect were also undetectable to radiologists (168/176). Twenty-four percent of the lesions (13/50) detected by the SSD were undetectable to radiologists. Logistic regression analysis indicated that density, necrosis, and size contributed to the lesions' visibility for radiologists, while for the SSD, the surrounding edema also enhanced the detection performance.

CONCLUSION

The SSD model we developed could detect brain metastases larger than 6 mm to some extent, a quarter of which were even retrospectively unrecognizable to radiologists.

摘要

目的

开发并研究基于深度学习的脑转移瘤检测方法,用于非增强 CT(NECT)。

方法

本研究纳入了 116 例患者的 116 例NECT 影像(81 例男性,年龄 66.5±10.6 岁),分别使用 89 例和 27 例病例来训练和测试单镜头探测器(SSD)模型。注释由三位放射科医生使用对比增强 CT(CECT)图像上的边界框进行。NECT 被配准并重新切片到 CECT 上。使用 SSD 的 50%置信度阈值评估检测性能,使用灵敏度、阳性预测值(PPV)和每扫描的假阳性率(FPR)进行评估。对于假阴性和真阳性,使用二项逻辑回归检查可能的影响因素。

结果

对于 6 毫米或更大的病灶,SSD 的灵敏度为 35.4%(95%置信区间[32.3%,33.5%];51/144),FPR 为 14.9(95%置信区间[12.4,13.9])。总体灵敏度为 23.8%(95%置信区间:[21.3%,22.8%];55/231),PPV 为 19.1%(95%置信区间:[18.5%,20.4%];98/513),FPR 为 15.4%(95%置信区间:[12.9%,14.5%])。SSD 未能检测到的 95%的病灶也无法被放射科医生检测到(168/176)。SSD 检测到的 24%的病灶(13/50)无法被放射科医生检测到。逻辑回归分析表明,密度、坏死和大小有助于放射科医生检测病灶,而对于 SSD,周围水肿也提高了检测性能。

结论

我们开发的 SSD 模型可以在一定程度上检测到大于 6 毫米的脑转移瘤,其中四分之一甚至是放射科医生回顾性无法识别的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验