Suppr超能文献

特征融合提高 MRI 单次激发深度学习检测小的脑转移瘤。

Feature-fusion improves MRI single-shot deep learning detection of small brain metastases.

机构信息

Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.

Department of Radiology, Teikyo University Hospital, Mizonokuchi, Kanagawa, Japan.

出版信息

J Neuroimaging. 2022 Jan;32(1):111-119. doi: 10.1111/jon.12916. Epub 2021 Aug 13.

Abstract

BACKGROUND AND PURPOSE

To examine whether feature-fusion (FF) method improves single-shot detector's (SSD's) detection of small brain metastases on contrast-enhanced (CE) T1-weighted MRI.

METHODS

The study included 234 MRI scans from 234 patients (64.3 years±12.0; 126 men). The ground-truth annotation was performed semiautomatically. SSDs with and without an FF module were developed and trained using 178 scans. The detection performance was evaluated at the SSDs' 50% confidence threshold using sensitivity, positive-predictive value (PPV), and the false-positive (FP) per scan with the remaining 56 scans.

RESULTS

FF-SSD achieved an overall sensitivity of 86.0% (95% confidence interval [CI]: [83.0%, 85.6%]; 196/228) and 46.8% PPV (95% CI: [42.0%, 46.3%]; 196/434), with 4.3 FP (95% CI: [4.3, 4.9]). Lesions smaller than 3 mm had 45.8% sensitivity (95% CI: [36.1%, 45.5%]; 22/48) with 2.0 FP (95% CI: [1.9, 2.1]). Lesions measuring 3-6 mm had 92.3% sensitivity (95% CI: [86.5%, 92.0%]; 48/52) with 1.8 FP (95% CI: [1.7, 2.2]). Lesions larger than 6 mm had 98.4% sensitivity (95% CI: [97.8%, 99.4%]; 126/128) 0.5 FP (95% CI: [0.5, 0.8]) per scan. FF-SSD had a significantly higher sensitivity for lesions < 3 mm (p = 0.008, t = 3.53) than the baseline SSD, while the overall PPV was similar (p = 0.06, t = -2.16). A similar trend was observed even when the detector's confidence threshold was varied as low as 0.2, for which the FF-SSD's sensitivity was 91.2% and the FP was 9.5.

CONCLUSIONS

The FF-SSD algorithm identified brain metastases on CE T1-weighted MRI with high accuracy.

摘要

背景与目的

探究特征融合(FF)方法是否能提高单次检测(SSD)对增强对比 T1 加权 MRI 中小脑转移瘤的检测能力。

方法

本研究纳入了 234 例患者(64.3 岁±12.0;126 例男性)的 234 例 MRI 扫描。采用半自动方法进行了地面实况注释。使用 178 例扫描对带有和不带有 FF 模块的 SSD 进行了开发和训练。使用其余 56 例扫描,以灵敏度、阳性预测值(PPV)和每例扫描的假阳性(FP)来评估 SSD 在其 50%置信度阈值下的检测性能。

结果

FF-SSD 的总体灵敏度为 86.0%(95%置信区间[CI]:[83.0%,85.6%];196/228),PPV 为 46.8%(95% CI:[42.0%,46.3%];196/434),FP 为 4.3(95% CI:[4.3,4.9])。小于 3mm 的病灶的灵敏度为 45.8%(95% CI:[36.1%,45.5%];22/48),FP 为 2.0(95% CI:[1.9,2.1])。3-6mm 的病灶灵敏度为 92.3%(95% CI:[86.5%,92.0%];48/52),FP 为 1.8(95% CI:[1.7,2.2])。大于 6mm 的病灶灵敏度为 98.4%(95% CI:[97.8%,99.4%];126/128),每例扫描 FP 为 0.5(95% CI:[0.5,0.8])。FF-SSD 对小于 3mm 的病灶的灵敏度明显高于基线 SSD(p = 0.008,t = 3.53),而总体 PPV 相似(p = 0.06,t = -2.16)。即使将探测器的置信度阈值降低到 0.2,也观察到了类似的趋势,此时 FF-SSD 的灵敏度为 91.2%,FP 为 9.5。

结论

FF-SSD 算法在检测增强对比 T1 加权 MRI 中的脑转移瘤方面具有较高的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验