Suppr超能文献

深度学习在医学图像分析中的应用。

Deep Learning in Medical Image Analysis.

机构信息

Department of Radiology, University of Michigan, Ann Arbor, MI, USA.

出版信息

Adv Exp Med Biol. 2020;1213:3-21. doi: 10.1007/978-3-030-33128-3_1.

Abstract

Deep learning is the state-of-the-art machine learning approach. The success of deep learning in many pattern recognition applications has brought excitement and high expectations that deep learning, or artificial intelligence (AI), can bring revolutionary changes in health care. Early studies of deep learning applied to lesion detection or classification have reported superior performance compared to those by conventional techniques or even better than radiologists in some tasks. The potential of applying deep-learning-based medical image analysis to computer-aided diagnosis (CAD), thus providing decision support to clinicians and improving the accuracy and efficiency of various diagnostic and treatment processes, has spurred new research and development efforts in CAD. Despite the optimism in this new era of machine learning, the development and implementation of CAD or AI tools in clinical practice face many challenges. In this chapter, we will discuss some of these issues and efforts needed to develop robust deep-learning-based CAD tools and integrate these tools into the clinical workflow, thereby advancing towards the goal of providing reliable intelligent aids for patient care.

摘要

深度学习是一种先进的机器学习方法。深度学习在许多模式识别应用中的成功带来了兴奋和很高的期望,即深度学习或人工智能 (AI) 可以为医疗保健带来革命性的变化。早期的深度学习应用于病变检测或分类的研究报告称,其性能优于传统技术,甚至在某些任务中优于放射科医生。将基于深度学习的医学图像分析应用于计算机辅助诊断 (CAD),从而为临床医生提供决策支持并提高各种诊断和治疗过程的准确性和效率,这激发了 CAD 的新的研究和开发工作。尽管在这个新的机器学习时代充满了乐观情绪,但在临床实践中开发和实施 CAD 或 AI 工具仍面临许多挑战。在本章中,我们将讨论其中的一些问题以及开发基于深度学习的稳健 CAD 工具并将这些工具集成到临床工作流程中所需的努力,从而朝着为患者护理提供可靠智能辅助的目标迈进。

相似文献

1
Deep Learning in Medical Image Analysis.深度学习在医学图像分析中的应用。
Adv Exp Med Biol. 2020;1213:3-21. doi: 10.1007/978-3-030-33128-3_1.
4
10
Deep learning models in medical image analysis.医学图像分析中的深度学习模型。
J Oral Biosci. 2022 Sep;64(3):312-320. doi: 10.1016/j.job.2022.03.003. Epub 2022 Mar 17.

引用本文的文献

本文引用的文献

4
Improving Workflow Efficiency for Mammography Using Machine Learning.利用机器学习提高乳腺 X 光摄影工作流程效率。
J Am Coll Radiol. 2020 Jan;17(1 Pt A):56-63. doi: 10.1016/j.jacr.2019.05.012. Epub 2019 May 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验