Spièce Jean, Evangeli Charalambos, Robson Alexander J, El Sachat Alexandros, Haenel Linda, Alonso M Isabel, Garriga Miquel, Robinson Benjamin J, Oehme Michael, Schulze Jörg, Alzina Francesc, Sotomayor Torres Clivia, Kolosov Oleg V
Physics Department, Lancaster University, LA1 4YB, UK.
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
Nanoscale. 2021 Jun 28;13(24):10829-10836. doi: 10.1039/d0nr08768h. Epub 2021 Jun 11.
Managing thermal transport in nanostructures became a major challenge in the development of active microelectronic, optoelectronic and thermoelectric devices, stalling the famous Moore's law of clock speed increase of microprocessors for more than a decade. To find the solution to this and linked problems, one needs to quantify the ability of these nanostructures to conduct heat with adequate precision, nanoscale resolution, and, essentially, for the internal layers buried in the 3D structure of modern semiconductor devices. Existing thermoreflectance measurements and "hot wire" 3ω methods cannot be effectively used at lateral dimensions of a layer below a micrometre; moreover, they are sensitive mainly to the surface layers of a relatively high thickness of above 100 nm. Scanning thermal microscopy (SThM), while providing the required lateral resolution, provides mainly qualitative data of the layer conductance due to undefined tip-surface and interlayer contact resistances. In this study, we used cross-sectional SThM (xSThM), a new method combining scanning probe microscopy compatible Ar-ion beam exit nano-cross-sectioning (BEXP) and SThM, to quantify thermal conductance in complex multilayer nanostructures and to measure local thermal conductivity of oxide and semiconductor materials, such as SiO, SiGe and GeSn. By using the new method that provides 10 nm thickness and few tens of nm lateral resolution, we pinpoint crystalline defects in SiGe/GeSn optoelectronic materials by measuring nanoscale thermal transport and quantifying thermal conductivity and interfacial thermal resistance in thin spin-on materials used in extreme ultraviolet lithography (eUV) fabrication processing. The new capability of xSThM demonstrated here for the first time is poised to provide vital insights into thermal transport in advanced nanoscale materials and devices.
在有源微电子、光电子和热电设备的发展过程中,管理纳米结构中的热传输成为一项重大挑战,致使著名的微处理器时钟速度增长的摩尔定律停滞了十多年。为找到解决这一问题及相关问题的方法,人们需要以足够的精度、纳米级分辨率,尤其是针对现代半导体器件三维结构中埋藏的内层,来量化这些纳米结构的导热能力。现有的热反射测量和“热线”3ω方法在层的横向尺寸小于一微米时无法有效使用;此外,它们主要对厚度超过100纳米的较厚表面层敏感。扫描热显微镜(SThM)虽然提供了所需的横向分辨率,但由于尖端 - 表面和层间接触电阻不明确,主要提供层电导的定性数据。在本研究中,我们使用了横截面扫描热显微镜(xSThM),这是一种将扫描探针显微镜兼容的氩离子束出射纳米横截面切割(BEXP)和SThM相结合的新方法,用于量化复杂多层纳米结构中的热导率,并测量氧化物和半导体材料(如SiO、SiGe和GeSn)的局部热导率。通过使用这种提供10纳米厚度和几十纳米横向分辨率的新方法,我们通过测量纳米级热传输以及量化极紫外光刻(eUV)制造工艺中使用的旋涂材料中的热导率和界面热阻,来精确确定SiGe/GeSn光电子材料中的晶体缺陷。本文首次展示的xSThM的新能力有望为先进纳米级材料和器件中的热传输提供至关重要的见解。