Physics Department, Lancaster University, Lancaster, LA1 4YB, UK.
Nanotechnology. 2013 Nov 22;24(46):465706. doi: 10.1088/0957-4484/24/46/465706. Epub 2013 Oct 28.
Nanoscale heat transport is of increasing importance as it often defines performance of modern processors and thermoelectric nanomaterials, and affects functioning of chemical sensors and biosensors. Scanning thermal microscopy (SThM) is the leading tool for nanoscale mapping of thermal properties, but it is often negatively affected by unstable tip-surface thermal contacts. While operating SThM in-liquid environment may allow unimpeded thermal contact and open new application areas, it has so far been regarded as impossible due to increased heat dissipation into the liquid, and the perceived reduced spatial thermal resolution. Nevertheless, in this paper we show that such liquid immersion SThM (iSThM) is fully feasible and, while its thermal sensitivity and spatial resolution is somewhat below that of in-air SThM, it has sufficient thermal contrast to detect thermal conductivity variations in few tens of nm thick graphite nanoflake and metal-polymer nanostructured interconnects. Our results confirm that thermal sensing in iSThM can provide nanoscale resolution on the order of 30 nm, that, coupled with the absence of tip snap-in due to the elimination of capillary forces, opens the possibility for nanoscale thermal mapping in liquids, including thermal phenomena in energy storage devices, catalysts and biosystems.
纳米尺度的热传输变得越来越重要,因为它通常决定了现代处理器和热电纳米材料的性能,并影响化学传感器和生物传感器的功能。扫描热显微镜(SThM)是用于热性质纳米级测绘的主要工具,但它经常受到不稳定的尖端-表面热接触的负面影响。虽然在液体环境中操作 SThM 可能允许不受阻碍的热接触并开辟新的应用领域,但由于热量向液体的增加耗散,以及感知到的空间热分辨率降低,迄今为止,人们认为这是不可能的。然而,在本文中,我们表明,这种液体浸入式 SThM(iSThM)是完全可行的,尽管其热灵敏度和空间分辨率略低于空气 SThM,但它具有足够的热对比度,可以检测几十纳米厚的石墨纳米薄片和金属-聚合物纳米结构互连中热导率的变化。我们的结果证实,iSThM 中的热感应可以提供 30nm 左右的纳米级分辨率,再加上由于消除了毛细力而不存在尖端卡入,这为液体中的纳米级热测绘开辟了可能性,包括储能装置、催化剂和生物系统中的热现象。