Suppr超能文献

基于新型人工智能模型和人类优化算法的风化伟晶岩纳米管状埃洛石去除水中重金属的性能评价。

Performance evaluation of nanotubular halloysites from weathered pegmatites in removing heavy metals from water through novel artificial intelligence-based models and human-based optimization algorithm.

机构信息

Department of Exploration Geology, Faculty of Geosciences and Geoengineering, Hanoi University of Mining and Geology, 18 Vien st., Duc Thang ward, Bac Tu Liem dist., Hanoi, Viet Nam; Centre for Excellence in Analysis and Experiment, Hanoi University of Mining and Geology, 18 Vien st., Duc Thang ward, Bac Tu Liem dist., Hanoi, Viet Nam.

Department of Surface Mining, Mining Faculty, Hanoi University of Mining and Geology, 18 Vien st., Duc Thang ward, Bac Tu Liem dist., Hanoi, Viet Nam; Centre for Mining, Electro-Mechanical Research, Hanoi University of Mining and Geology, 18 Vien st., Duc Thang ward, Bac Tu Liem dist., Hanoi, Viet Nam.

出版信息

Chemosphere. 2021 Nov;282:131012. doi: 10.1016/j.chemosphere.2021.131012. Epub 2021 Jun 3.

Abstract

The efforts of this study aimed to evaluate the feasibility of the nanotubular halloysites in weathered pegmatites (NaHWP) for removing heavy metals (i.e., Cd, Pb) from water. Furthermore, two novel intelligent models, such as teaching-learning-based optimization (TLBO)-artificial neural network (ANN), and TLBO-support vector regression (SVR), named as TLBO-ANN and TLBO-SVR models, respectively, were proposed to predict the Cd and Pb absorption efficiencies from water using the NaHWP absorbent. Databases used, including 53 experiments for Pb absorption and 56 experiments for Cd absorption from water, under the catalysis of different conditions, such as initial concentration of Pb and Cd, solution pH, adsorbent weight, and contact time. Subsequently, the TLBO-ANN and TLBO-SVR models were developed and applied to predict the efficiencies of Cd and Pb absorption from water, aiming to evaluate the role as well as the effects of different conditions on the absorption efficiencies using the NaHWP absorbent. The standalone ANN and SVM models were also taken into consideration and compared with the proposed hybrid models (i.e., TLBO-ANN and TLBO-SVR). The results showed that the NaHWP detected in a Kaolin mine (Vietnam) with 70% nanotubular halloysites is a potential adsorbent for water treatment to eliminate heavy metals from water. The two novel hybrid models proposed, i.e., TLBO-ANN and TLBO-SVR, also yielded the dominant performances and accuracies in predicting the Cd and Pb absorption efficiencies from water, i.e., RMSE = 1.190 and 1.102, R = 0.951 and 0.957, VAF = 94.436 and 95.028 for the TLBO-ANN and TLBO-SVR models, respectively, in predicting the Pb absorption efficiency from water; RMSE = 3.084 and 3.442, R = 0.971 and 0.965, VAF = 96.499 and 96.415 for the TLBO-ANN and TLBO-SVR models, respectively, in predicting the Cd absorption efficiency from water. Furthermore, the validation results also demonstrated these findings in practice through 23 experiments with the accuracies of 98.3% and 98.37% for the TLBO-ANN and TLBO-SVR models, respectively, in predicting the Pb absorption efficiency from water; the accuracies of 98.3% and 97.46% for the TLBO-ANN and TLBO-SVR models, respectively, in predicting the Cd absorption efficiency from water. Besides, solution pH was evaluated as the most critical parameter that can be adjusted to enhance the performance of the absorption of the heavy metals in this study. By using the NaHWP absorbent and the novel proposed intelligent models developed, heavy metals can be eliminated entirely from water, providing pure water/clean freshwater without any risk of adverse health effects for the short term or long term.

摘要

本研究旨在评估风化伟晶岩中的管状纳米海泡石(NaHWP)去除水中重金属(如 Cd、Pb)的可行性。此外,还提出了两种新的智能模型,即基于教学法的优化(TLBO)-人工神经网络(ANN)和 TLBO-支持向量回归(SVR)模型,分别命名为 TLBO-ANN 和 TLBO-SVR 模型,用于预测使用 NaHWP 吸附剂从水中吸收 Cd 和 Pb 的效率。所使用的数据库包括 53 个 Pb 吸收实验和 56 个 Cd 吸收实验,这些实验是在不同条件下进行的,如初始 Pb 和 Cd 浓度、溶液 pH 值、吸附剂重量和接触时间。随后,开发了 TLBO-ANN 和 TLBO-SVR 模型,并将其应用于预测从水中吸收 Cd 和 Pb 的效率,旨在评估不同条件对使用 NaHWP 吸附剂吸收效率的作用和影响。还考虑了独立的 ANN 和 SVM 模型,并将其与提出的混合模型(即 TLBO-ANN 和 TLBO-SVR)进行了比较。结果表明,在越南高岭土矿中检测到的 70%管状纳米海泡石是一种潜在的水处理吸附剂,可用于从水中去除重金属。所提出的两种新型混合模型,即 TLBO-ANN 和 TLBO-SVR,在预测从水中吸收 Cd 和 Pb 的效率方面也表现出了卓越的性能和准确性,即 RMSE=1.190 和 1.102,R=0.951 和 0.957,VAF=94.436 和 95.028,分别用于 TLBO-ANN 和 TLBO-SVR 模型,用于预测从水中吸收 Pb 的效率;RMSE=3.084 和 3.442,R=0.971 和 0.965,VAF=96.499 和 96.415,分别用于 TLBO-ANN 和 TLBO-SVR 模型,用于预测从水中吸收 Cd 的效率。此外,验证结果还通过 23 个实验证明了这一发现,TLBO-ANN 和 TLBO-SVR 模型对从水中吸收 Pb 的效率的预测准确率分别为 98.3%和 98.37%;TLBO-ANN 和 TLBO-SVR 模型对从水中吸收 Cd 的效率的预测准确率分别为 98.3%和 97.46%。此外,还评估了溶液 pH 值作为可以调整的最关键参数,以增强重金属在这项研究中的吸收性能。通过使用 NaHWP 吸附剂和开发的新型智能模型,可以将重金属从水中完全去除,提供纯净的水/清洁的淡水,没有任何短期或长期不利健康影响的风险。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验