Suppr超能文献

利用新开发的混合人工智能模型预测澳大利亚湾的沉积物重金属。

Prediction of sediment heavy metal at the Australian Bays using newly developed hybrid artificial intelligence models.

机构信息

Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.

Department of Geology, College of Science, University of Baghdad, Baghdad, Iraq.

出版信息

Environ Pollut. 2021 Jan 1;268(Pt B):115663. doi: 10.1016/j.envpol.2020.115663. Epub 2020 Sep 16.

Abstract

Hybrid artificial intelligence (AI) models are developed for sediment lead (Pb) prediction in two Bays (i.e., Bramble (BB) and Deception (DB)) stations, Australia. A feature selection (FS) algorithm called extreme gradient boosting (XGBoost) is proposed to abstract the correlated input parameters for the Pb prediction and validated against principal component of analysis (PCA), recursive feature elimination (RFE), and the genetic algorithm (GA). XGBoost model is applied using a grid search strategy (Grid-XGBoost) for predicting Pb and validated against the commonly used AI models, artificial neural network (ANN) and support vector machine (SVM). The input parameter selection approaches redimensioned the 21 parameters into 9-5 parameters without losing their learned information over the models' training phase. At the BB station, the mean absolute percentage error (MAPE) values (0.06, 0.32, 0.34, and 0.33) were achieved for the XGBoost-SVM, XGBoost-ANN, XGBoost-Grid-XGBoost, and Grid-XGBoost models, respectively. At the DB station, the lowest MAPE values, 0.25 and 0.24, were attained for the XGBoost-Grid-XGBoost and Grid-XGBoost models, respectively. Overall, the proposed hybrid AI models provided a reliable and robust computer aid technology for sediment Pb prediction that contribute to the best knowledge of environmental pollution monitoring and assessment.

摘要

混合人工智能 (AI) 模型被开发用于预测澳大利亚两个海湾(即 Bramble (BB) 和 Deception (DB)) 的沉积物铅 (Pb)。提出了一种称为极端梯度增强 (XGBoost) 的特征选择 (FS) 算法,用于抽象相关的输入参数进行 Pb 预测,并与主成分分析 (PCA)、递归特征消除 (RFE) 和遗传算法 (GA) 进行验证。XGBoost 模型使用网格搜索策略 (Grid-XGBoost) 进行 Pb 预测,并与常用的 AI 模型人工神经网络 (ANN) 和支持向量机 (SVM) 进行验证。输入参数选择方法将 21 个参数重新定义为 9-5 个参数,而不会在模型训练阶段丢失其学习信息。在 BB 站,XGBoost-SVM、XGBoost-ANN、XGBoost-Grid-XGBoost 和 Grid-XGBoost 模型的平均绝对百分比误差 (MAPE) 值分别为 0.06、0.32、0.34 和 0.33。在 DB 站,XGBoost-Grid-XGBoost 和 Grid-XGBoost 模型的最低 MAPE 值分别为 0.25 和 0.24。总体而言,所提出的混合 AI 模型为沉积物 Pb 预测提供了可靠和强大的计算机辅助技术,有助于更好地了解环境污染监测和评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验