ProtoQSAR SL., CEEI (Centro Europeo de Empresas Innovadoras), Parque Tecnológico de Valencia, 12 Av. Benjamin Franklin, 46980, Paterna, Valencia, Spain; Department of Food Science, Faculty of Veterinary Medicine-FARAH, University of Liège, 10 Av. Cureghem, 4000, Sart-Tilman, Liège, Belgium.
The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, BT9 5DL, Belfast, Northern Ireland, United Kingdom.
Environ Toxicol Pharmacol. 2021 Oct;87:103688. doi: 10.1016/j.etap.2021.103688. Epub 2021 Jun 10.
Multiple substances are considered endocrine disrupting chemicals (EDCs). However, there is a significant gap in the early prioritization of EDC's effects. In this work, in silico and in vitro methods were used to model estrogenicity. Two Quantitative Structure-Activity Relationship (QSAR) models based on Logistic Regression and REPTree algorithms were built using a large and diverse database of estrogen receptor (ESR) agonism. A 10-fold external validation demonstrated their robustness and predictive capacity. Mechanistic interpretations of the molecular descriptors (C-026, nArOH,PW5, B06[Br-Br]) used for modelling suggested that the heteroatomic fragments, aromatic hydroxyls, and bromines, and the relative bond accessibility areas of molecules, are structural determinants in estrogenicity. As validation of the QSARs, ESR transactivity of thirteen persistent organic pollutants (POPs) and suspected EDCs was tested in vitro using the MMV-Luc cell line. A good correspondence between predictions and experimental bioassays demonstrated the value of the QSARs for prioritization of ESR agonist compounds.
多种物质被认为是内分泌干扰化学物质(EDCs)。然而,在 EDC 影响的早期优先排序方面存在显著差距。在这项工作中,使用计算和体外方法对雌激素活性进行建模。使用包含大量不同的雌激素受体(ESR)激动剂数据库,构建了基于 Logistic 回归和 REPTree 算法的两个定量构效关系(QSAR)模型。十折外部验证证明了它们的稳健性和预测能力。用于建模的分子描述符(C-026、nArOH、PW5、B06[Br-Br])的机制解释表明,杂原子片段、芳香羟基和溴以及分子的相对键可及区域是雌激素活性的结构决定因素。作为 QSAR 的验证,使用 MMV-Luc 细胞系在体外测试了十三种持久性有机污染物(POPs)和疑似 EDC 的 ESR 转活性。预测值与实验生物测定值之间的良好一致性证明了 QSAR 用于 ESR 激动剂化合物优先排序的价值。