Suppr超能文献

基于Tox21 10K化合物库鉴定雌激素受体的活性和非活性激动剂/拮抗剂:二项式分析和结构警示

Identification of active and inactive agonists/antagonists of estrogen receptor based on Tox21 10K compound library: Binomial analysis and structure alert.

作者信息

Wang Jia, Huang Ying, Wang Shuo, Yang Yi, He Jia, Li Chao, Zhao Yuan H, Martyniuk Christopher J

机构信息

State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China.

Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China.

出版信息

Ecotoxicol Environ Saf. 2021 May;214:112114. doi: 10.1016/j.ecoenv.2021.112114. Epub 2021 Mar 9.

Abstract

Endocrine disrupting chemicals can mimic, block, or interfere with hormones in organisms and subsequently affect their development and reproduction, which has raised significant public concern over the past several decades. To investigate (quantitative) structure-activity relationship, 8280 compounds were compiled from the Tox21 10K compound library. The results show that 50% activity concentrations of agonists are poorly related to that of antagonists because many compounds have considerably different activity concentrations between the agonists and antagonists. Analysis on the chemical classes based on mode of action (MOA) reveals that estrogen receptor (ER) is not the main target site in the acute toxicity to aquatic organisms. Binomial analysis of active and inactive ER agonists/antagonists reveals that ER activity of compounds is dominated by octanol/water partition coefficient and excess molar refraction. The binomial equation developed from the two descriptors can classify well active and inactive ER chemicals with an overall prediction accuracy of 73%. The classification equation developed from the molecular descriptors indicates that estrogens react with the receptor through hydrophobic and π-n electron interactions. At the same time, molecular ionization, polarity, and hydrogen bonding ability can also affect the chemical ER activity. A decision tree developed from chemical structures and their applications reveals that many hormones, proton pump inhibitors, PAHs, progestin, insecticides, fungicides, steroid and chemotherapy medications are active ER agonists/antagonists. On the other hand, many monocyclic/nonaromatic chain compounds and herbicides are inactive ER compounds. The decision tree and binomial equation developed here are valuable tools to predict active and inactive ER compounds.

摘要

内分泌干扰化学物质能够模拟、阻断或干扰生物体中的激素,进而影响其发育和繁殖,在过去几十年中这已引起了公众的高度关注。为了研究(定量)构效关系,从Tox21 10K化合物库中收集了8280种化合物。结果表明,激动剂的50%活性浓度与拮抗剂的活性浓度相关性较差,因为许多化合物在激动剂和拮抗剂之间的活性浓度有很大差异。基于作用模式(MOA)对化学类别进行分析表明,雌激素受体(ER)不是水生生物急性毒性的主要靶位点。对活性和非活性ER激动剂/拮抗剂进行二项式分析表明,化合物的ER活性由正辛醇/水分配系数和过量摩尔折射主导。由这两个描述符建立的二项式方程能够很好地对活性和非活性ER化学物质进行分类,总体预测准确率为73%。从分子描述符建立的分类方程表明,雌激素通过疏水和π-π电子相互作用与受体反应。同时,分子电离、极性和氢键能力也会影响化学物质的ER活性。根据化学结构及其应用建立的决策树表明,许多激素、质子泵抑制剂、多环芳烃、孕激素、杀虫剂、杀菌剂、类固醇和化疗药物是活性ER激动剂/拮抗剂。另一方面,许多单环/非芳香链化合物和除草剂是无活性的ER化合物。这里建立的决策树和二项式方程是预测活性和非活性ER化合物的有价值工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验