Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, Medical Faculty, University of Duisburg-Essen, Essen, Germany.
Imaging Center Essen (IMCES), Electron Microscopy Unit (EMU), Medical Faculty, University of Duisburg-Essen, Essen, Germany.
J Cachexia Sarcopenia Muscle. 2021 Aug;12(4):933-954. doi: 10.1002/jcsm.12742. Epub 2021 Jun 13.
Cardioprotection by preventing or repairing mitochondrial damage is an unmet therapeutic need. To understand the role of cardiomyocyte mitochondria in physiopathology, the reliable characterization of the mitochondrial morphology and compartment is pivotal. Previous studies mostly relied on two-dimensional (2D) routine transmission electron microscopy (TEM), thereby neglecting the real three-dimensional (3D) mitochondrial organization. This study aimed to determine whether classical 2D TEM analysis of the cardiomyocyte ultrastructure is sufficient to comprehensively describe the mitochondrial compartment and to reflect mitochondrial number, size, dispersion, distribution, and morphology.
Spatial distribution of the complex mitochondrial network and morphology, number, and size heterogeneity of cardiac mitochondria in isolated adult mouse cardiomyocytes and adult wild-type left ventricular tissues (C57BL/6) were assessed using a comparative 3D imaging system based on focused ion beam-scanning electron microscopy (FIB-SEM) nanotomography. For comparison of 2D vs. 3D data sets, analytical strategies and mathematical comparative approaches were performed. To confirm the value of 3D data for mitochondrial changes, we compared the obtained values for number, coverage area, size heterogeneity, and complexity of wild-type cardiomyocyte mitochondria with data sets from mice lacking the cytosolic and mitochondrial protein BNIP3 (BCL-2/adenovirus E1B 19-kDa interacting protein 3; Bnip3 ) using FIB-SEM. Mitochondrial respiration was assessed on isolated mitochondria using the Seahorse XF analyser. A cardiac biopsy was obtained from a male patient (48 years) suffering from myocarditis.
The FIB-SEM nanotomographic analysis revealed that no linear relationship exists for mitochondrial number (r = 0.02; P = 0.9511), dispersion (r = -0.03; P = 0.9188), and shape (roundness: r = 0.15, P = 0.6397; elongation: r = -0.09, P = 0.7804) between 3D and 2D results. Cumulative frequency distribution analysis showed a diverse abundance of mitochondria with different sizes in 3D and 2D. Qualitatively, 2D data could not reflect mitochondrial distribution and dynamics existing in 3D tissue. 3D analyses enabled the discovery that BNIP3 deletion resulted in more smaller, less complex cardiomyocyte mitochondria (number: P < 0.01; heterogeneity: C.V. wild-type 89% vs. Bnip3 68%; complexity: P < 0.001) forming large myofibril-distorting clusters, as seen in human myocarditis with disturbed mitochondrial dynamics. Bnip3 mice also show a higher respiration rate (P < 0.01).
Here, we demonstrate the need of 3D analyses for the characterization of mitochondrial features in cardiac tissue samples. Hence, we observed that BNIP3 deletion physiologically acts as a molecular brake on mitochondrial number, suggesting a role in mitochondrial fusion/fission processes and thereby regulating the homeostasis of cardiac bioenergetics.
通过预防或修复线粒体损伤来实现心脏保护是一种未满足的治疗需求。为了了解心肌细胞中线粒体在生理病理中的作用,对线粒体形态和区室进行可靠地表征是至关重要的。以前的研究主要依赖于二维(2D)常规透射电子显微镜(TEM),从而忽略了真实的三维(3D)线粒体组织。本研究旨在确定经典的 2D TEM 分析是否足以全面描述线粒体区室,并反映线粒体数量、大小、分散度、分布和形态。
使用基于聚焦离子束扫描电子显微镜(FIB-SEM)纳米断层扫描的比较 3D 成像系统,评估分离的成年小鼠心肌细胞和成年野生型左心室组织(C57BL/6)中线粒体复杂网络和形态的空间分布以及心脏线粒体的数量、大小异质性、分散度、分布和形态。为了比较 2D 与 3D 数据集,我们进行了分析策略和数学比较方法。为了确认 3D 数据对线粒体变化的价值,我们将野生型心肌细胞中线粒体数量、覆盖面积、大小异质性和复杂性的获得值与缺乏细胞质和线粒体蛋白 BNIP3(BCL-2/腺病毒 E1B 19-kDa 相互作用蛋白 3;Bnip3)的小鼠的数据进行了比较,使用 FIB-SEM。使用 Seahorse XF 分析仪在分离的线粒体上评估线粒体呼吸。从一名患有心肌炎的男性患者(48 岁)获得心脏活检。
FIB-SEM 纳米断层扫描分析表明,线粒体数量(r=0.02;P=0.9511)、分散度(r=-0.03;P=0.9188)和形态(圆形度:r=0.15,P=0.6397;伸长率:r=-0.09,P=0.7804)之间不存在线性关系。3D 和 2D 结果的累积频率分布分析显示,存在不同大小的线粒体具有不同的丰度。定性地说,2D 数据无法反映 3D 组织中存在的线粒体分布和动态。3D 分析能够发现 BNIP3 缺失导致更小、更简单的心肌细胞线粒体(数量:P<0.01;异质性:CV 野生型 89%比 Bnip3 68%;复杂性:P<0.001)形成大的肌原纤维扭曲簇,如人类心肌炎中线粒体动力学紊乱所见。Bnip3 小鼠的呼吸率也更高(P<0.01)。
在这里,我们证明了 3D 分析对于心脏组织样本中线粒体特征的表征是必要的。因此,我们观察到 BNIP3 缺失在生理上作为线粒体数量的分子制动器,这表明它在线粒体融合/裂变过程中起作用,从而调节心脏生物能量的动态平衡。