Suppr超能文献

基于卷积神经网络的疲劳足实验与数值诊断。

Experimental and numerical diagnosis of fatigue foot using convolutional neural network.

机构信息

Department of Mechanical Engineering, Urmia University of Technology (UUT), Urmia, Iran.

Department of Industrial Engineering, Urmia University of Technology (UUT), Urmia, Iran.

出版信息

Comput Methods Biomech Biomed Engin. 2021 Dec;24(16):1828-1840. doi: 10.1080/10255842.2021.1921164. Epub 2021 Jun 14.

Abstract

Fatigue is an essential criterion for physiotherapy in injured athletes. Muscle fatigue mechanism also is a crucial matter in designing a workout program. It is mainly related to physical injury, cerebrovascular accident, spinal cord injury, and rheumatologic disease. The leg is one of the organs in the body where fatigue is visible, and usually, the first fatigue traces in the human body are shown. The main objective of the article is to diagnosis tired and untired feet base on digital footprint images. Therefore, the foot images of students in the age group of 20-30 were examined. The device is a digital footprint scanner. This device includes a plate screen equipped with pressure sensors and footprints in the image. A treadmill is used for 8 min to tire our test individuals. Therefore, six methods of k-nearest-neighbor classifier, multilayer perceptron, support vector machine, naïve Bayesian learning, decision tree, and convolutional neural network (CNN) architecture are presented to achieve the goal. First, the images are grayscale and divide into four regions, and the mean and variance of pressure in each of the four areas are extracted as features. Finally, the classification is accomplished using machine learning methods. Then, the results are compared with a proposed CNN architecture. The presented CNN method is outperforming other approaches and can be used for future fatigue diagnosis systems.

摘要

疲劳是受伤运动员物理治疗的基本标准。肌肉疲劳机制也是设计锻炼计划的关键问题。它主要与身体损伤、脑血管意外、脊髓损伤和风湿性疾病有关。腿是身体中疲劳可见的器官之一,通常,人体的第一个疲劳痕迹会显示出来。本文的主要目的是根据数字足迹图像诊断疲劳和不累的脚。因此,检查了年龄在 20-30 岁之间的学生的脚图像。该设备是一种数字足迹扫描仪。该设备包括一个装有压力传感器的平板屏幕和图像中的足迹。使用跑步机使我们的测试个体疲劳 8 分钟。因此,提出了六种方法的 k-最近邻分类器、多层感知机、支持向量机、朴素贝叶斯学习、决策树和卷积神经网络 (CNN) 架构,以实现目标。首先,图像灰度化并分为四个区域,然后提取每个区域的压力平均值和方差作为特征。最后,使用机器学习方法进行分类。然后,将结果与提出的 CNN 架构进行比较。提出的 CNN 方法表现优于其他方法,可用于未来的疲劳诊断系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验