Suppr超能文献

PSOWNNs-CNN:一种基于图像处理和机器学习方法的计算机放射学乳腺癌诊断改进算法。

PSOWNNs-CNN: A Computational Radiology for Breast Cancer Diagnosis Improvement Based on Image Processing Using Machine Learning Methods.

机构信息

Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA, USA.

Department of Computer Engineering, Tehran North Branch, Islamic Azad University, Tehran, Iran.

出版信息

Comput Intell Neurosci. 2022 May 11;2022:5667264. doi: 10.1155/2022/5667264. eCollection 2022.

Abstract

Early diagnosis of breast cancer is an important component of breast cancer therapy. A variety of diagnostic platforms can provide valuable information regarding breast cancer patients, including image-based diagnostic techniques. However, breast abnormalities are not always easy to identify. Mammography, ultrasound, and thermography are some of the technologies developed to detect breast cancer. Using image processing and artificial intelligence techniques, the computer enables radiologists to identify chest problems more accurately. The purpose of this article was to review various approaches to detecting breast cancer using artificial intelligence and image processing. The authors present an innovative approach for identifying breast cancer using machine learning methods. Compared to current approaches, such as CNN, our particle swarm optimized wavelet neural network (PSOWNN) method appears to be relatively superior. The use of machine learning methods is clearly beneficial in terms of improved performance, efficiency, and quality of images, which are crucial to the most innovative medical applications. According to a comparison of the process's 905 images to those of other illnesses, 98.6% of the disorders are correctly identified. In summary, PSOWNNs, therefore, have a specificity of 98.8%. Furthermore, PSOWNNs have a precision of 98.6%, which means that, despite the high number of women diagnosed with breast cancer, only 830 (95.2%) are diagnosed. In other words, 95.2% of images are correctly classified. PSOWNNs are more accurate than other machine learning algorithms, SVM, KNN, and CNN.

摘要

早期诊断乳腺癌是乳腺癌治疗的重要组成部分。各种诊断平台可以为乳腺癌患者提供有价值的信息,包括基于图像的诊断技术。然而,乳房异常并不总是容易识别的。乳腺钼靶、超声和热成像都是一些用于检测乳腺癌的技术。计算机使用图像处理和人工智能技术,可以帮助放射科医生更准确地识别胸部问题。本文旨在回顾使用人工智能和图像处理检测乳腺癌的各种方法。作者提出了一种使用机器学习方法识别乳腺癌的创新方法。与目前的方法(如 CNN)相比,我们的粒子群优化小波神经网络(PSOWNN)方法似乎相对优越。使用机器学习方法在提高性能、效率和图像质量方面显然是有益的,这对最具创新性的医疗应用至关重要。通过将该过程的 905 张图像与其他疾病的图像进行比较,98.6%的疾病得到了正确识别。因此,PSOWNN 的特异性为 98.8%。此外,PSOWNN 的准确率为 98.6%,这意味着尽管有大量女性被诊断出患有乳腺癌,但只有 830 人(95.2%)被诊断出。换句话说,95.2%的图像被正确分类。PSOWNN 比其他机器学习算法 SVM、KNN 和 CNN 更准确。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c70c/9117073/14ceeff34b97/CIN2022-5667264.001.jpg

相似文献

1
PSOWNNs-CNN: A Computational Radiology for Breast Cancer Diagnosis Improvement Based on Image Processing Using Machine Learning Methods.
Comput Intell Neurosci. 2022 May 11;2022:5667264. doi: 10.1155/2022/5667264. eCollection 2022.
2
Mammography diagnosis of breast cancer screening through machine learning: a systematic review and meta-analysis.
Clin Exp Med. 2023 Oct;23(6):2341-2356. doi: 10.1007/s10238-022-00895-0. Epub 2022 Oct 15.
3
Artificial Intelligence for Mammography and Digital Breast Tomosynthesis: Current Concepts and Future Perspectives.
Radiology. 2019 Nov;293(2):246-259. doi: 10.1148/radiol.2019182627. Epub 2019 Sep 24.
4
Computational Radiology in Breast Cancer Screening and Diagnosis Using Artificial Intelligence.
Can Assoc Radiol J. 2021 Feb;72(1):98-108. doi: 10.1177/0846537120949974. Epub 2020 Aug 31.
5
Effective Image Processing and Segmentation-Based Machine Learning Techniques for Diagnosis of Breast Cancer.
Comput Math Methods Med. 2022 Apr 8;2022:6841334. doi: 10.1155/2022/6841334. eCollection 2022.
7
Investigating the link between radiologists' gaze, diagnostic decision, and image content.
J Am Med Inform Assoc. 2013 Nov-Dec;20(6):1067-75. doi: 10.1136/amiajnl-2012-001503. Epub 2013 Jun 20.
8
Image annotation and curation in radiology: an overview for machine learning practitioners.
Eur Radiol Exp. 2024 Feb 6;8(1):11. doi: 10.1186/s41747-023-00408-y.
9
Classification of Benign and Malignant Breast Masses on Mammograms for Large Datasets using Core Vector Machines.
Curr Med Imaging. 2020;16(6):703-710. doi: 10.2174/1573405615666190801121506.
10
Review on Computer Aided Breast Cancer Detection and Diagnosis using Machine Learning Methods on Mammogram Image.
Curr Med Imaging. 2023;19(12):1361-1371. doi: 10.2174/1573405619666230213093639.

引用本文的文献

1
The times they are AI-changing: AI-powered advances in the application of extracellular vesicles to liquid biopsy in breast cancer.
Extracell Vesicles Circ Nucl Acids. 2025 Feb 28;6(1):128-140. doi: 10.20517/evcna.2024.51. eCollection 2025.
2
Artificial Intelligence in Biomedical Engineering and Its Influence on Healthcare Structure: Current and Future Prospects.
Bioengineering (Basel). 2025 Feb 8;12(2):163. doi: 10.3390/bioengineering12020163.
3
Machine learning and new insights for breast cancer diagnosis.
J Int Med Res. 2024 Apr;52(4):3000605241237867. doi: 10.1177/03000605241237867.
4
Employing Atrous Pyramid Convolutional Deep Learning Approach for Detection to Diagnose Breast Cancer Tumors.
Comput Intell Neurosci. 2023 Nov 14;2023:7201479. doi: 10.1155/2023/7201479. eCollection 2023.
5
Application of Deep Learning System Technology in Identification of Women's Breast Cancer.
Medicina (Kaunas). 2023 Mar 1;59(3):487. doi: 10.3390/medicina59030487.
7
Monocular Depth Estimation Using Deep Learning: A Review.
Sensors (Basel). 2022 Jul 18;22(14):5353. doi: 10.3390/s22145353.

本文引用的文献

1
SARS-CoV-2 triggering autoimmune diseases.
Cytokine. 2022 Jun;154:155873. doi: 10.1016/j.cyto.2022.155873. Epub 2022 Apr 5.
2
Classification of Breast Cancer Images by Implementing Improved DCNN with Artificial Fish School Model.
Comput Intell Neurosci. 2022 Feb 22;2022:6785707. doi: 10.1155/2022/6785707. eCollection 2022.
3
Improved Feature Point Pair Purification Algorithm Based on SIFT During Endoscope Image Stitching.
Front Neurorobot. 2022 Feb 15;16:840594. doi: 10.3389/fnbot.2022.840594. eCollection 2022.
5
Deep learning in optical metrology: a review.
Light Sci Appl. 2022 Feb 23;11(1):39. doi: 10.1038/s41377-022-00714-x.
6
Factors Associated with Mammography Screening Choices by Women Aged 40-49 at Average Risk.
J Womens Health (Larchmt). 2022 Aug;31(8):1120-1126. doi: 10.1089/jwh.2021.0232. Epub 2022 Feb 15.
7
Statistical methods for evaluating the fine needle aspiration cytology procedure in breast cancer diagnosis.
BMC Med Res Methodol. 2022 Feb 6;22(1):40. doi: 10.1186/s12874-022-01506-y.
8
Preoperative Prediction of Axillary Lymph Node Metastasis in Breast Cancer Using CNN Based on Multiparametric MRI.
J Magn Reson Imaging. 2022 Sep;56(3):700-709. doi: 10.1002/jmri.28082. Epub 2022 Feb 2.
10
CNN architecture optimization using bio-inspired algorithms for breast cancer detection in infrared images.
Comput Biol Med. 2022 Mar;142:105205. doi: 10.1016/j.compbiomed.2021.105205. Epub 2022 Jan 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验