Division of Computer Science and Engineering, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Republic of Korea.
Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju-si 54907, Republic of Korea; Department of Psychiatry, Chonbuk National University Medical School, Jeonju-si 54907, Republic of Korea.
Schizophr Res. 2019 Oct;212:186-195. doi: 10.1016/j.schres.2019.07.034. Epub 2019 Aug 6.
The recent deep learning-based studies on the classification of schizophrenia (SCZ) using MRI data rely on manual extraction of feature vector, which destroys the 3D structure of MRI data. In order to both identify SCZ and find relevant biomarkers, preserving the 3D structure in classification pipeline is critical.
The present study investigated whether the proposed 3D convolutional neural network (CNN) model produces higher accuracy compared to the support vector machine (SVM) and other 3D-CNN models in distinguishing individuals with SCZ spectrum disorders (SSDs) from healthy controls. We sought to construct saliency map using class saliency visualization (CSV) method.
Task-based fMRI data were obtained from 103 patients with SSDs and 41 normal controls. To preserve spatial locality, we used 3D activation map as input for the 3D convolutional autoencoder (3D-CAE)-based CNN model. Data on 62 patients with SSDs were used for unsupervised pretraining with 3D-CAE. Data on the remaining 41 patients and 41 normal controls were processed for training and testing with CNN. The performance of our model was analyzed and compared with SVM and other 3D-CNN models. The learned CNN model was visualized using CSV method.
Using task-based fMRI data, our model achieved 84.15%∼84.43% classification accuracies, outperforming SVM and other 3D-CNN models. The inferior and middle temporal lobes were identified as key regions for classification.
Our findings suggest that the proposed 3D-CAE-based CNN can classify patients with SSDs and controls with higher accuracy compared to other models. Visualization of salient regions provides important clinical information.
最近基于深度学习的磁共振成像(MRI)数据分类研究依赖于特征向量的手动提取,这破坏了 MRI 数据的 3D 结构。为了识别精神分裂症(SCZ)并找到相关的生物标志物,在分类管道中保留 3D 结构至关重要。
本研究旨在调查基于 3D 卷积神经网络(CNN)的模型与支持向量机(SVM)和其他 3D-CNN 模型相比,在区分精神分裂症谱系障碍(SSDs)患者和健康对照者方面是否能产生更高的准确率。我们试图使用类别显著性可视化(CSV)方法构建显著性图。
任务态 fMRI 数据来自 103 例 SSD 患者和 41 例正常对照者。为了保持空间局部性,我们使用 3D 激活图作为基于 3D 卷积自动编码器(3D-CAE)的 CNN 模型的输入。使用 62 例 SSD 患者的数据进行 3D-CAE 的无监督预训练。剩余的 41 例患者和 41 例正常对照者的数据用于 CNN 的训练和测试。分析并比较了我们模型的性能与 SVM 和其他 3D-CNN 模型。使用 CSV 方法可视化所学习的 CNN 模型。
使用任务态 fMRI 数据,我们的模型实现了 84.15%~84.43%的分类准确率,优于 SVM 和其他 3D-CNN 模型。中下颞叶被确定为分类的关键区域。
我们的研究结果表明,与其他模型相比,所提出的基于 3D-CAE 的 CNN 可以更准确地对 SSD 患者和对照者进行分类。显著区域的可视化提供了重要的临床信息。