Suppr超能文献

呼出气溶胶和飞沫传输过程中发生的微物理过程的准确表征。

Accurate Representations of the Microphysical Processes Occurring during the Transport of Exhaled Aerosols and Droplets.

作者信息

Walker Jim S, Archer Justice, Gregson Florence K A, Michel Sarah E S, Bzdek Bryan R, Reid Jonathan P

机构信息

School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom.

出版信息

ACS Cent Sci. 2021 Jan 27;7(1):200-209. doi: 10.1021/acscentsci.0c01522. Epub 2021 Jan 5.

Abstract

Aerosols and droplets from expiratory events play an integral role in transmitting pathogens such as SARS-CoV-2 from an infected individual to a susceptible host. However, there remain significant uncertainties in our understanding of the aerosol droplet microphysics occurring during drying and sedimentation and the effect on the sedimentation outcomes. Here, we apply a new treatment for the microphysical behavior of respiratory fluid droplets to a droplet evaporation/sedimentation model and assess the impact on sedimentation distance, time scale, and particle phase. Above a 100 μm initial diameter, the sedimentation outcome for a respiratory droplet is insensitive to composition and ambient conditions. Below 100 μm, and particularly below 80 μm, the increased settling time allows the exact nature of the evaporation process to play a significant role in influencing the sedimentation outcome. For this size range, an incorrect treatment of the droplet composition, or imprecise use of RH or temperature, can lead to large discrepancies in sedimentation distance (with representative values >1 m, >2 m, and >2 m, respectively). Additionally, a respiratory droplet is likely to undergo a phase change prior to sedimenting if initially <100 μm in diameter, provided that the RH is below the measured phase change RH. Calculations of the potential exposure versus distance from the infected source show that the volume fraction of the initial respiratory droplet distribution, in this size range, which remains elevated above 1 m decreases from 1 at 1 m to 0.125 at 2 m.

摘要

呼气过程产生的气溶胶和飞沫在将 SARS-CoV-2 等病原体从感染者传播到易感宿主方面起着不可或缺的作用。然而,我们对干燥和沉降过程中气溶胶飞沫微观物理特性以及对沉降结果的影响仍存在重大不确定性。在此,我们将一种针对呼吸液滴微观物理行为的新处理方法应用于液滴蒸发/沉降模型,并评估其对沉降距离、时间尺度和颗粒相的影响。当初始直径大于 100 μm 时,呼吸液滴的沉降结果对成分和环境条件不敏感。在 100 μm 以下,特别是在 80 μm 以下,沉降时间的增加使得蒸发过程的确切性质在影响沉降结果方面发挥重要作用。对于这个尺寸范围,对液滴成分的错误处理,或对相对湿度(RH)或温度的不精确使用,可能导致沉降距离出现很大差异(代表性值分别大于 1 m、大于 2 m 和大于 2 m)。此外,如果初始直径小于 100 μm,且相对湿度低于测量的相变相对湿度,则呼吸液滴在沉降之前可能会发生相变。对潜在暴露与距感染源距离的计算表明,在此尺寸范围内,初始呼吸液滴分布中在 1 m 以上仍保持较高水平的体积分数从 1 m 处的 1 降至 2 m 处的 0.125。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fdd/7845015/b9f931b902c0/oc0c01522_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验