Fine Jonathan A, Rajasekar Anand A, Jethava Krupal P, Chopra Gaurav
Department of Chemistry, Purdue University 560 Oval Drive West Lafayette IN 47907 USA
Department of Biological Engineering, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras Chennai 600036 India.
Chem Sci. 2020 Mar 13;11(18):4618-4630. doi: 10.1039/c9sc06240h.
State-of-the-art identification of the functional groups present in an unknown chemical entity requires the expertise of a skilled spectroscopist to analyse and interpret Fourier transform infra-red (FTIR), mass spectroscopy (MS) and/or nuclear magnetic resonance (NMR) data. This process can be time-consuming and error-prone, especially for complex chemical entities that are poorly characterised in the literature, or inefficient to use with synthetic robots producing molecules at an accelerated rate. Herein, we introduce a fast, multi-label deep neural network for accurately identifying all the functional groups of unknown compounds using a combination of FTIR and MS spectra. We do not use any database, pre-established rules, procedures, or peak-matching methods. Our trained neural network reveals patterns typically used by human chemists to identify standard groups. Finally, we experimentally validated our neural network, trained on single compounds, to predict functional groups in compound mixtures. Our methodology showcases practical utility for future use in autonomous analytical detection.
要确定未知化学实体中存在的官能团,目前最先进的方法需要熟练的光谱学家运用专业知识来分析和解释傅里叶变换红外(FTIR)、质谱(MS)和/或核磁共振(NMR)数据。这个过程可能既耗时又容易出错,特别是对于那些在文献中表征不佳的复杂化学实体,或者在与以加速速率生产分子的合成机器人配合使用时效率低下。在此,我们引入了一种快速的多标签深度神经网络,用于结合FTIR和MS光谱准确识别未知化合物的所有官能团。我们不使用任何数据库、预先建立的规则、程序或峰匹配方法。我们训练的神经网络揭示了人类化学家通常用于识别标准基团的模式。最后,我们通过实验验证了我们在单一化合物上训练的神经网络,以预测化合物混合物中的官能团。我们的方法展示了其在未来自主分析检测中的实际应用价值。