Suppr超能文献

用于使用NADH和FAD分析荧光寿命图像的联合回归-分类深度学习框架。

Joint regression-classification deep learning framework for analyzing fluorescence lifetime images using NADH and FAD.

作者信息

Mukherjee Lopamudra, Sagar Md Abdul Kader, Ouellette Jonathan N, Watters Jyoti J, Eliceiri Kevin W

机构信息

Department of Computer Science, University of Wisconsin Whitewater, Whitewater WI 53190, USA.

Co-corresponding authors.

出版信息

Biomed Opt Express. 2021 Apr 14;12(5):2703-2719. doi: 10.1364/BOE.417108. eCollection 2021 May 1.

Abstract

In this paper, we develop a deep neural network based joint classification-regression approach to identify microglia, a resident central nervous system macrophage, in the brain using fluorescence lifetime imaging microscopy (FLIM) data. Microglia are responsible for several key aspects of brain development and neurodegenerative diseases. Accurate detection of microglia is key to understanding their role and function in the CNS, and has been studied extensively in recent years. In this paper, we propose a joint classification-regression scheme that can incorporate fluorescence lifetime data from two different autofluorescent metabolic co-enzymes, FAD and NADH, in the same model. This approach not only represents the lifetime data more accurately but also provides the classification engine a more diverse data source. Furthermore, the two components of model can be trained jointly which combines the strengths of the regression and classification methods. We demonstrate the efficacy of our method using datasets generated using mouse brain tissue which show that our joint learning model outperforms results on the coenzymes taken independently, providing an efficient way to classify microglia from other cells.

摘要

在本文中,我们开发了一种基于深度神经网络的联合分类回归方法,利用荧光寿命成像显微镜(FLIM)数据识别大脑中的小胶质细胞(一种中枢神经系统常驻巨噬细胞)。小胶质细胞在大脑发育和神经退行性疾病的几个关键方面发挥作用。准确检测小胶质细胞是理解其在中枢神经系统中作用和功能的关键,近年来对此进行了广泛研究。在本文中,我们提出了一种联合分类回归方案,该方案可以在同一模型中纳入来自两种不同自发荧光代谢辅酶FAD和NADH的荧光寿命数据。这种方法不仅能更准确地表示寿命数据,还为分类引擎提供了更多样化的数据源。此外,模型的两个组件可以联合训练,结合了回归和分类方法的优势。我们使用小鼠脑组织生成的数据集证明了我们方法的有效性,结果表明我们的联合学习模型优于独立使用辅酶的结果,为从小胶质细胞和其他细胞中分类小胶质细胞提供了一种有效方法。

相似文献

1
Joint regression-classification deep learning framework for analyzing fluorescence lifetime images using NADH and FAD.
Biomed Opt Express. 2021 Apr 14;12(5):2703-2719. doi: 10.1364/BOE.417108. eCollection 2021 May 1.
2
Machine Learning Methods for Fluorescence Lifetime Imaging (FLIM) Based Label-Free Detection of Microglia.
Front Neurosci. 2020 Sep 3;14:931. doi: 10.3389/fnins.2020.00931. eCollection 2020.
3
A deep learning framework for classifying microglia activation state using morphology and intrinsic fluorescence lifetime data.
Front Neuroinform. 2022 Dec 16;16:1040008. doi: 10.3389/fninf.2022.1040008. eCollection 2022.
4
5
Multiphoton FLIM imaging of NAD(P)H and FAD with one excitation wavelength.
J Biomed Opt. 2020 Jan;25(1):1-16. doi: 10.1117/1.JBO.25.1.014510.
6
Sensitive detection of intracellular environment of normal and cancer cells by autofluorescence lifetime imaging.
J Photochem Photobiol B. 2016 Dec;165:256-265. doi: 10.1016/j.jphotobiol.2016.10.023. Epub 2016 Oct 24.
7
Metabolic imaging with the use of fluorescence lifetime imaging microscopy (FLIM) accurately detects mitochondrial dysfunction in mouse oocytes.
Fertil Steril. 2018 Dec;110(7):1387-1397. doi: 10.1016/j.fertnstert.2018.07.022. Epub 2018 Nov 14.
8
Optically sectioned wide-field fluorescence lifetime imaging microscopy enabled by structured illumination.
Biomed Opt Express. 2017 Feb 8;8(3):1455-1465. doi: 10.1364/BOE.8.001455. eCollection 2017 Mar 1.
9
Fluorescence intensity and lifetime redox ratios detect metabolic perturbations in T cells.
Biomed Opt Express. 2020 Sep 16;11(10):5674-5688. doi: 10.1364/BOE.401935. eCollection 2020 Oct 1.

引用本文的文献

2
A deep learning framework for classifying microglia activation state using morphology and intrinsic fluorescence lifetime data.
Front Neuroinform. 2022 Dec 16;16:1040008. doi: 10.3389/fninf.2022.1040008. eCollection 2022.
3
Suppression of natural lens fluorescence in fundus autofluorescence measurements: review of hardware solutions.
Biomed Opt Express. 2022 Sep 7;13(10):5151-5170. doi: 10.1364/BOE.462559. eCollection 2022 Oct 1.

本文引用的文献

1
FLIMJ: An open-source ImageJ toolkit for fluorescence lifetime image data analysis.
PLoS One. 2020 Dec 30;15(12):e0238327. doi: 10.1371/journal.pone.0238327. eCollection 2020.
2
Machine Learning Methods for Fluorescence Lifetime Imaging (FLIM) Based Label-Free Detection of Microglia.
Front Neurosci. 2020 Sep 3;14:931. doi: 10.3389/fnins.2020.00931. eCollection 2020.
3
4
Optimization of FLIM imaging, fitting and analysis for auto-fluorescent NAD(P)H and FAD in cells and tissues.
Methods Appl Fluoresc. 2020 Feb 5;8(2):024001. doi: 10.1088/2050-6120/ab6f25.
5
Fast fit-free analysis of fluorescence lifetime imaging via deep learning.
Proc Natl Acad Sci U S A. 2019 Nov 26;116(48):24019-24030. doi: 10.1073/pnas.1912707116. Epub 2019 Nov 12.
7
Deep Multi-Task Multi-Channel Learning for Joint Classification and Regression of Brain Status.
Med Image Comput Comput Assist Interv. 2017 Sep;10435:3-11. doi: 10.1007/978-3-319-66179-7_1. Epub 2017 Sep 4.
9
Artificial neural network approaches for fluorescence lifetime imaging techniques.
Opt Lett. 2016 Jun 1;41(11):2561-4. doi: 10.1364/OL.41.002561.
10
Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool.
BMC Med Imaging. 2015 Aug 12;15:29. doi: 10.1186/s12880-015-0068-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验