Suppr超能文献

新型冠状病毒2基因组的计算分析与系统发育聚类

Computational Analysis and Phylogenetic Clustering of SARS-CoV-2 Genomes.

作者信息

Jolly Bani, Scaria Vinod

机构信息

CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi, India.

Academy of Scientific and Innovative Research (AcSIR), Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, India.

出版信息

Bio Protoc. 2021 Apr 20;11(8):e3999. doi: 10.21769/BioProtoc.3999.

Abstract

COVID-19, the disease caused by the novel SARS-CoV-2 coronavirus, originated as an isolated outbreak in the Hubei province of China but soon created a global pandemic and is now a major threat to healthcare systems worldwide. Following the rapid human-to-human transmission of the infection, institutes around the world have made efforts to generate genome sequence data for the virus. With thousands of genome sequences for SARS-CoV-2 now available in the public domain, it is possible to analyze the sequences and gain a deeper understanding of the disease, its origin, and its epidemiology. Phylogenetic analysis is a potentially powerful tool for tracking the transmission pattern of the virus with a view to aiding identification of potential interventions. Toward this goal, we have created a comprehensive protocol for the analysis and phylogenetic clustering of SARS-CoV-2 genomes using Nextstrain, a powerful open-source tool for the real-time interactive visualization of genome sequencing data. Approaches to focus the phylogenetic clustering analysis on a particular region of interest are detailed in this protocol.

摘要

新冠病毒病(COVID-19)由新型严重急性呼吸综合征冠状病毒2(SARS-CoV-2)引起,最初在中国湖北省作为一个孤立的疫情爆发点出现,但很快便引发了全球大流行,如今已成为全球医疗系统面临的重大威胁。随着该感染在人际间迅速传播,世界各地的机构纷纷努力生成该病毒的基因组序列数据。鉴于目前已有数千条SARS-CoV-2基因组序列在公共领域可用,分析这些序列并更深入了解该疾病、其起源及流行病学情况成为可能。系统发育分析是一种潜在的强大工具,可用于追踪病毒的传播模式,以协助确定潜在的干预措施。为实现这一目标,我们使用Nextstrain创建了一个全面的方案,用于分析SARS-CoV-2基因组并进行系统发育聚类,Nextstrain是一个用于基因组测序数据实时交互式可视化的强大开源工具。本方案详细介绍了将系统发育聚类分析聚焦于特定感兴趣区域的方法。

相似文献

1
Computational Analysis and Phylogenetic Clustering of SARS-CoV-2 Genomes.
Bio Protoc. 2021 Apr 20;11(8):e3999. doi: 10.21769/BioProtoc.3999.
2
Genome Detective Coronavirus Typing Tool for rapid identification and characterization of novel coronavirus genomes.
Bioinformatics. 2020 Jun 1;36(11):3552-3555. doi: 10.1093/bioinformatics/btaa145.
4
Genomic Epidemiology of SARS-CoV-2 From Mainland China With Newly Obtained Genomes From Henan Province.
Front Microbiol. 2021 May 20;12:673855. doi: 10.3389/fmicb.2021.673855. eCollection 2021.
5
Identification of Epidemiological Traits by Analysis of SARS-CoV-2 Sequences.
Viruses. 2021 Apr 27;13(5):764. doi: 10.3390/v13050764.
8
Phylogenetic analysis of SARS-CoV-2 genomes in Turkey.
Turk J Biol. 2020 Jun 21;44(3):146-156. doi: 10.3906/biy-2005-35. eCollection 2020.
9
Genomic characterization and phylogenetic evolution of the SARS-CoV-2.
Acta Virol. 2020;64(4):496-500. doi: 10.4149/av_2020_403.
10
High throughput nanopore sequencing of SARS-CoV-2 viral genomes from patient samples.
J Biol Methods. 2021 Sep 27;8(COVID 19 Spec Iss):e155. doi: 10.14440/jbm.2021.360. eCollection 2021.

引用本文的文献

3
Membrane Clustering of Coronavirus Variants Using Document Similarity.
Genes (Basel). 2022 Oct 28;13(11):1966. doi: 10.3390/genes13111966.
4
Geographical Landscape and Transmission Dynamics of SARS-CoV-2 Variants Across India: A Longitudinal Perspective.
Front Genet. 2021 Dec 17;12:753648. doi: 10.3389/fgene.2021.753648. eCollection 2021.
5
Variants of concern responsible for SARS-CoV-2 vaccine breakthrough infections from India.
J Med Virol. 2022 Apr;94(4):1696-1700. doi: 10.1002/jmv.27461. Epub 2021 Nov 25.
7
High throughput detection and genetic epidemiology of SARS-CoV-2 using COVIDSeq next-generation sequencing.
PLoS One. 2021 Feb 17;16(2):e0247115. doi: 10.1371/journal.pone.0247115. eCollection 2021.
8
A Distinct Phylogenetic Cluster of Indian Severe Acute Respiratory Syndrome Coronavirus 2 Isolates.
Open Forum Infect Dis. 2020 Sep 18;7(11):ofaa434. doi: 10.1093/ofid/ofaa434. eCollection 2020 Nov.

本文引用的文献

1
Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.
Lancet. 2020 Feb 15;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5. Epub 2020 Jan 24.
2
A Novel Coronavirus from Patients with Pneumonia in China, 2019.
N Engl J Med. 2020 Feb 20;382(8):727-733. doi: 10.1056/NEJMoa2001017. Epub 2020 Jan 24.
3
Nextstrain: real-time tracking of pathogen evolution.
Bioinformatics. 2018 Dec 1;34(23):4121-4123. doi: 10.1093/bioinformatics/bty407.
4
GISAID: Global initiative on sharing all influenza data - from vision to reality.
Euro Surveill. 2017 Mar 30;22(13). doi: 10.2807/1560-7917.ES.2017.22.13.30494.
5
Phylogenesys and homology modeling in Zika virus epidemic: food for thought.
Pathog Glob Health. 2016 Oct-Dec;110(7-8):269-274. doi: 10.1080/20477724.2016.1235337. Epub 2016 Sep 27.
6
IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies.
Mol Biol Evol. 2015 Jan;32(1):268-74. doi: 10.1093/molbev/msu300. Epub 2014 Nov 3.
7
MAFFT multiple sequence alignment software version 7: improvements in performance and usability.
Mol Biol Evol. 2013 Apr;30(4):772-80. doi: 10.1093/molbev/mst010. Epub 2013 Jan 16.
9
High-resolution molecular epidemiology and evolutionary history of HIV-1 subtypes in Albania.
PLoS One. 2008 Jan 2;3(1):e1390. doi: 10.1371/journal.pone.0001390.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验