Suppr超能文献

基于 Xgboost 和信息融合的小数据集精神分裂症改进的多分类。

Improved Multiclassification of Schizophrenia Based on Xgboost and Information Fusion for Small Datasets.

机构信息

Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing 210009, China.

Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China.

出版信息

Comput Math Methods Med. 2022 Jul 19;2022:1581958. doi: 10.1155/2022/1581958. eCollection 2022.

Abstract

To improve the performance in multiclass classification for small datasets, a new approach for schizophrenic classification is proposed in the present study. Firstly, the Xgboost classifier is introduced to discriminate the two subtypes of schizophrenia from health controls by analyzing the functional magnetic resonance imaging (fMRI) data, while the gray matter volume (GMV) and amplitude of low-frequency fluctuations (ALFF) are extracted as the features of classifiers. Then, the D-S combination rule of evidence is used to achieve fusion to determine the basic probability assignment based on the output of different classifiers. Finally, the algorithm is applied to classify 38 healthy controls, 16 deficit schizophrenic patients, and 31 nondeficit schizophrenic patients. 10-folds cross-validation method is used to assess classification performance. The results show the proposed algorithm with a sensitivity of 73.89%, which is higher than other classification algorithms, such as supported vector machine (SVM), logistic regression (LR), -nearest neighbor (KNN) algorithm, random forest (RF), BP neural network (NN), classification and regression tree (CART), naive Bayes classifier (NB), extreme gradient boosting (Xgboost), and deep neural network (DNN). The accuracy of the fusion algorithm is higher than that of classifier based on the GMV or ALFF in the small datasets. The accuracy rate of the improved multiclassification method based on Xgboost and fusion algorithm is higher than that of other machine learning methods, which can further assist the diagnosis of clinical schizophrenia.

摘要

为了提高小数据集的多类分类性能,本研究提出了一种新的精神分裂症分类方法。首先,通过分析功能磁共振成像(fMRI)数据,引入 Xgboost 分类器来区分精神分裂症的两种亚型和健康对照组,而灰度体积(GMV)和低频波动幅度(ALFF)则作为分类器的特征被提取出来。然后,采用证据的 D-S 组合规则来实现融合,以基于不同分类器的输出确定基本概率赋值。最后,将该算法应用于分类 38 名健康对照者、16 名缺陷型精神分裂症患者和 31 名非缺陷型精神分裂症患者。采用 10 折交叉验证方法评估分类性能。结果表明,所提出的算法的灵敏度为 73.89%,高于其他分类算法,如支持向量机(SVM)、逻辑回归(LR)、K-最近邻(KNN)算法、随机森林(RF)、BP 神经网络(NN)、分类回归树(CART)、朴素贝叶斯分类器(NB)、极端梯度提升(Xgboost)和深度神经网络(DNN)。在小数据集上,融合算法的准确率高于基于 GMV 或 ALFF 的分类器。基于 Xgboost 和融合算法的改进多分类方法的准确率高于其他机器学习方法,这可以进一步辅助临床精神分裂症的诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dadd/9325343/8b3c1e4162fd/CMMM2022-1581958.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验