Suppr超能文献

嵌套逻辑回归模型与ΔAUC应用:变点分析

Nested logistic regression models and ΔAUC applications: Change-point analysis.

作者信息

Lee Chun Yin

机构信息

Department of Applied Mathematics, 26680The Hong Kong Polytechnic University, Hong Kong.

出版信息

Stat Methods Med Res. 2021 Jul;30(7):1654-1666. doi: 10.1177/09622802211022377. Epub 2021 Jun 14.

Abstract

The area under the receiver operating characteristic curve (AUC) is one of the most popular measures for evaluating the performance of a predictive model. In nested models, the change in AUC (ΔAUC) can be a discriminatory measure of whether the newly added predictors provide significant improvement in terms of predictive accuracy. Recently, several authors have shown rigorously that ΔAUC can be degenerate and its asymptotic distribution is no longer normal when the reduced model is true, but it could be the distribution of a linear combination of some random variables [1,2]. Hence, the normality assumption and existing variance estimate cannot be applied directly for developing a statistical test under the nested models. In this paper, we first provide a brief review on the use of ΔAUC for comparing nested logistic models and the difficulty of retrieving the reference distribution behind. Then, we present a special case of the nested logistic regression models that the newly added predictor to the reduced model contains a change-point in its effects. A new test statistic based on ΔAUC is proposed in this setting. A simple resampling scheme is proposed to approximate the critical values for the test statistic. The inference of the change-point parameter is done via -out-of- bootstrap. Large-scale simulation is conducted to evaluate the finite-sample performance of the ΔAUC test for the change-point model. The proposed method is applied to two real-life datasets for illustration.

摘要

受试者工作特征曲线下面积(AUC)是评估预测模型性能最常用的指标之一。在嵌套模型中,AUC的变化量(ΔAUC)可以作为一种判别指标,用于判断新添加的预测变量在预测准确性方面是否有显著提升。最近,几位作者严格证明,当简化模型成立时,ΔAUC可能会退化,其渐近分布不再是正态分布,而是可能为某些随机变量线性组合的分布[1,2]。因此,正态性假设和现有的方差估计不能直接用于在嵌套模型下开展统计检验。在本文中,我们首先简要回顾了使用ΔAUC比较嵌套逻辑模型的方法以及获取其背后参考分布的困难。然后,我们给出了嵌套逻辑回归模型的一种特殊情况,即简化模型中新添加的预测变量在其效应上存在一个变化点。在此情形下,我们基于ΔAUC提出了一种新的检验统计量。我们提出了一种简单的重抽样方案来近似检验统计量的临界值。通过留一法自助抽样对变化点参数进行推断。进行了大规模模拟以评估变化点模型的ΔAUC检验的有限样本性能。所提出的方法应用于两个实际数据集进行说明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验