Suppr超能文献

放射学和生物化学生物标志物在预测放射性症状性膝关节骨关节炎进展中的表现

Performance of Radiological and Biochemical Biomarkers in Predicting Radio-Symptomatic Knee Osteoarthritis Progression.

作者信息

Almhdie-Imjabbar Ahmad, Toumi Hechmi, Lespessailles Eric

机构信息

Translational Medicine Research Platform, PRIMMO, University Hospital Center of Orleans, 45100 Orleans, France.

Department of Rheumatology, University Hospital Center of Orleans, 45100 Orleans, France.

出版信息

Biomedicines. 2024 Mar 16;12(3):666. doi: 10.3390/biomedicines12030666.

Abstract

Imaging biomarkers permit improved approaches to identify the most at-risk patients encountering knee osteoarthritis (KOA) progression. This study aimed to investigate the utility of trabecular bone texture (TBT) extracted from plain radiographs, associated with a set of clinical, biochemical, and radiographic data, as a predictor of long-term radiographic KOA progression. We used data from the Foundation for the National Institutes of Health (FNIH) Biomarkers Consortium dataset. The reference model made use of baseline TBT parameters adjusted for clinical covariates and radiological scores. Several models based on a combination of baseline and 24-month TBT variations (TBT∆TBT) were developed using logistic regression and compared to those based on baseline-only TBT parameters. All models were adjusted for baseline clinical covariates, radiological scores, and biochemical descriptors. The best overall performances for the prediction of radio-symptomatic, radiographic, and symptomatic progression were achieved using TBT∆TBT parameters solely, with area under the ROC curve values of 0.658 (95% CI: 0.612-0.705), 0.752 (95% CI: 0.700-0.804), and 0.698 (95% CI: 0.641-0.756), respectively. Adding biochemical markers did not significantly improve the performance of the TBT∆TBT-based model. Additionally, when TBT values were taken from the entire subchondral bone rather than just the medial, lateral, or central compartments, better results were obtained.

摘要

影像生物标志物有助于改进识别膝关节骨关节炎(KOA)进展风险最高患者的方法。本研究旨在探讨从平片提取的小梁骨纹理(TBT)与一组临床、生化和影像学数据相关联,作为KOA长期影像学进展预测指标的效用。我们使用了美国国立卫生研究院基金会(FNIH)生物标志物联盟数据集的数据。参考模型利用针对临床协变量和放射学评分调整后的基线TBT参数。使用逻辑回归开发了几个基于基线和24个月TBT变化(TBT∆TBT)组合的模型,并与仅基于基线TBT参数的模型进行比较。所有模型均针对基线临床协变量、放射学评分和生化描述符进行了调整。仅使用TBT∆TBT参数时,对放射性症状、影像学和症状进展预测的总体最佳性能得以实现,受试者工作特征曲线下面积值分别为0.658(95%CI:0.612 - 0.705)、0.752(95%CI:0.700 - 0.804)和0.698(95%CI:0.641 - 0.756)。添加生化标志物并未显著改善基于TBT∆TBT的模型性能。此外,当TBT值取自整个软骨下骨而非仅内侧、外侧或中央区域时,可获得更好的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/846b/10968173/0ad6aec434ae/biomedicines-12-00666-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验