Suppr超能文献

基于U统计量理论的ΔAUC、NRI和IDI的渐近分布。

Asymptotic distribution of ∆AUC, NRIs, and IDI based on theory of U-statistics.

作者信息

Demler Olga V, Pencina Michael J, Cook Nancy R, D'Agostino Ralph B

机构信息

Division of Preventive Medicine, Brigham and Women's Hospital, 900 Commonwealth Avenue, Boston, MA, 02115, U.S.A.

Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, 27708, U.S.A.

出版信息

Stat Med. 2017 Sep 20;36(21):3334-3360. doi: 10.1002/sim.7333. Epub 2017 Jun 19.

Abstract

The change in area under the curve (∆AUC), the integrated discrimination improvement (IDI), and net reclassification index (NRI) are commonly used measures of risk prediction model performance. Some authors have reported good validity of associated methods of estimating their standard errors (SE) and construction of confidence intervals, whereas others have questioned their performance. To address these issues, we unite the ∆AUC, IDI, and three versions of the NRI under the umbrella of the U-statistics family. We rigorously show that the asymptotic behavior of ∆AUC, NRIs, and IDI fits the asymptotic distribution theory developed for U-statistics. We prove that the ∆AUC, NRIs, and IDI are asymptotically normal, unless they compare nested models under the null hypothesis. In the latter case, asymptotic normality and existing SE estimates cannot be applied to ∆AUC, NRIs, or IDI. In the former case, SE formulas proposed in the literature are equivalent to SE formulas obtained from U-statistics theory if we ignore adjustment for estimated parameters. We use Sukhatme-Randles-deWet condition to determine when adjustment for estimated parameters is necessary. We show that adjustment is not necessary for SEs of the ∆AUC and two versions of the NRI when added predictor variables are significant and normally distributed. The SEs of the IDI and three-category NRI should always be adjusted for estimated parameters. These results allow us to define when existing formulas for SE estimates can be used and when resampling methods such as the bootstrap should be used instead when comparing nested models. We also use the U-statistic theory to develop a new SE estimate of ∆AUC. Copyright © 2017 John Wiley & Sons, Ltd.

摘要

曲线下面积变化(∆AUC)、综合判别改善(IDI)和净重新分类指数(NRI)是常用的风险预测模型性能度量指标。一些作者报告了估计其标准误差(SE)和构建置信区间的相关方法具有良好的有效性,而另一些作者则对其性能提出了质疑。为了解决这些问题,我们将∆AUC、IDI和三个版本的NRI统一在U统计量族的框架下。我们严格证明了∆AUC、NRI和IDI的渐近行为符合为U统计量发展的渐近分布理论。我们证明了∆AUC、NRI和IDI渐近正态,除非它们在原假设下比较嵌套模型。在后一种情况下,渐近正态性和现有的SE估计不能应用于∆AUC、NRI或IDI。在前一种情况下,如果我们忽略对估计参数的调整,文献中提出的SE公式与从U统计量理论获得的SE公式等价。我们使用Sukhatme-Randles-deWet条件来确定何时需要对估计参数进行调整。我们表明,当添加的预测变量显著且呈正态分布时,∆AUC和两个版本的NRI的SE不需要调整。IDI和三类NRI的SE应始终对估计参数进行调整。这些结果使我们能够确定何时可以使用现有的SE估计公式,以及在比较嵌套模型时何时应使用诸如自助法等重采样方法。我们还使用U统计量理论开发了一种新的∆AUC的SE估计。版权所有© 2017约翰威立父子有限公司。

相似文献

2
Clinical risk reclassification at 10 years.10年时的临床风险重新分类
Stat Med. 2017 Dec 10;36(28):4498-4502. doi: 10.1002/sim.7340.
8
Simpson's paradox in the integrated discrimination improvement.综合鉴别改善中的辛普森悖论。
Stat Med. 2017 Dec 10;36(28):4468-4481. doi: 10.1002/sim.6862. Epub 2016 Jan 5.

引用本文的文献

3
Quantitative measurements of M2BPGi depend on liver fibrosis and inflammation.M2BPGi 的定量测量取决于肝纤维化和炎症。
J Gastroenterol. 2024 Jul;59(7):598-608. doi: 10.1007/s00535-024-02100-3. Epub 2024 Apr 16.
4
A Modified Net Reclassification Improvement Statistic.一种改良的净重新分类改善统计量。
J Stat Plan Inference. 2023 Dec;227:18-33. doi: 10.1016/j.jspi.2023.03.001. Epub 2023 Mar 11.

本文引用的文献

3
RE: net risk reclassification P Values: valid or misleading?关于:净风险重新分类P值:有效还是误导?
J Natl Cancer Inst. 2014 Nov 27;107(1):355. doi: 10.1093/jnci/dju355. Print 2015 Jan.
7
Testing for improvement in prediction model performance.评估预测模型性能的改善情况。
Stat Med. 2013 Apr 30;32(9):1467-82. doi: 10.1002/sim.5727. Epub 2013 Jan 7.
8
A bias-corrected net reclassification improvement for clinical subgroups.临床亚组的校正偏倚净重新分类改善。
Med Decis Making. 2013 Feb;33(2):154-62. doi: 10.1177/0272989X12461856. Epub 2012 Oct 5.
9
Comparing ROC curves derived from regression models.比较回归模型得出的 ROC 曲线。
Stat Med. 2013 Apr 30;32(9):1483-93. doi: 10.1002/sim.5648. Epub 2012 Oct 3.
10
Misuse of DeLong test to compare AUCs for nested models.误用 Delong 检验比较嵌套模型的 AUC。
Stat Med. 2012 Oct 15;31(23):2577-87. doi: 10.1002/sim.5328. Epub 2012 Mar 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验