Suppr超能文献

基于具有分层散度损失的多适配器网络的RGBT跟踪

RGBT Tracking via Multi-Adapter Network with Hierarchical Divergence Loss.

作者信息

Lu Andong, Li Chenglong, Yan Yuqing, Tang Jin, Luo Bin

出版信息

IEEE Trans Image Process. 2021;30:5613-5625. doi: 10.1109/TIP.2021.3087341. Epub 2021 Jun 18.

Abstract

RGBT tracking has attracted increasing attention since RGB and thermal infrared data have strong complementary advantages, which could make trackers all-day and all-weather work. Existing works usually focus on extracting modality-shared or modality-specific information, but the potentials of these two cues are not well explored and exploited in RGBT tracking. In this paper, we propose a novel multi-adapter network to jointly perform modality-shared, modality-specific and instance-aware target representation learning for RGBT tracking. To this end, we design three kinds of adapters within an end-to-end deep learning framework. In specific, we use the modified VGG-M as the generality adapter to extract the modality-shared target representations. To extract the modality-specific features while reducing the computational complexity, we design a modality adapter, which adds a small block to the generality adapter in each layer and each modality in a parallel manner. Such a design could learn multilevel modality-specific representations with a modest number of parameters as the vast majority of parameters are shared with the generality adapter. We also design instance adapter to capture the appearance properties and temporal variations of a certain target. Moreover, to enhance the shared and specific features, we employ the loss of multiple kernel maximum mean discrepancy to measure the distribution divergence of different modal features and integrate it into each layer for more robust representation learning. Extensive experiments on two RGBT tracking benchmark datasets demonstrate the outstanding performance of the proposed tracker against the state-of-the-art methods.

摘要

由于RGB和热红外数据具有很强的互补优势,这使得跟踪器能够全天候工作,因此RGBT跟踪受到了越来越多的关注。现有工作通常侧重于提取模态共享或模态特定的信息,但在RGBT跟踪中,这两种线索的潜力尚未得到充分探索和利用。在本文中,我们提出了一种新颖的多适配器网络,用于联合执行模态共享、模态特定和实例感知的目标表示学习,以用于RGBT跟踪。为此,我们在端到端深度学习框架内设计了三种适配器。具体来说,我们使用改进的VGG-M作为通用适配器来提取模态共享的目标表示。为了在降低计算复杂度的同时提取模态特定特征,我们设计了一种模态适配器,它在每一层以并行方式为每个模态在通用适配器上添加一个小模块。这样的设计可以在参数数量适中的情况下学习多级模态特定表示,因为绝大多数参数与通用适配器共享。我们还设计了实例适配器来捕捉特定目标的外观属性和时间变化。此外,为了增强共享和特定特征,我们采用多核最大均值差异损失来衡量不同模态特征的分布差异,并将其集成到每一层以进行更稳健的表示学习。在两个RGBT跟踪基准数据集上进行的大量实验表明,所提出的跟踪器相对于现有方法具有出色的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验