Suppr超能文献

暹罗高效特征变换:用于红、绿、蓝、红外多域目标跟踪的自适应时间特征提取混合网络

SiamEFT: adaptive-time feature extraction hybrid network for RGBE multi-domain object tracking.

作者信息

Liu Shuqi, Wang Gang, Song Yong, Huang Jinxiang, Huang Yiqian, Zhou Ya, Wang Shiqiang

机构信息

School of Optics and Photonics, Beijing Institute of Technology, Beijing, China.

Center of Brain Sciences, Beijing Institute of Basic Medical Sciencesy, Beijing, China.

出版信息

Front Neurosci. 2024 Aug 8;18:1453419. doi: 10.3389/fnins.2024.1453419. eCollection 2024.

Abstract

Integrating RGB and Event (RGBE) multi-domain information obtained by high-dynamic-range and temporal-resolution event cameras has been considered an effective scheme for robust object tracking. However, existing RGBE tracking methods have overlooked the unique spatio-temporal features over different domains, leading to object tracking failure and inefficiency, especally for objects against complex backgrounds. To address this problem, we propose a novel tracker based on adaptive-time feature extraction hybrid networks, namely Siamese Event Frame Tracker (SiamEFT), which focuses on the effective representation and utilization of the diverse spatio-temporal features of RGBE. We first design an adaptive-time attention module to aggregate event data into frames based on adaptive-time weights to enhance information representation. Subsequently, the SiamEF module and cross-network fusion module combining artificial neural networks and spiking neural networks hybrid network are designed to effectively extract and fuse the spatio-temporal features of RGBE. Extensive experiments on two RGBE datasets (VisEvent and COESOT) show that the SiamEFT achieves a success rate of 0.456 and 0.574, outperforming the state-of-the-art competing methods and exhibiting a 2.3-fold enhancement in efficiency. These results validate the superior accuracy and efficiency of SiamEFT in diverse and challenging scenes.

摘要

融合由高动态范围和时间分辨率事件相机获得的RGB和事件(RGBE)多域信息,已被视为一种用于鲁棒目标跟踪的有效方案。然而,现有的RGBE跟踪方法忽略了不同域上独特的时空特征,导致目标跟踪失败和效率低下,尤其是对于处于复杂背景下的目标。为了解决这个问题,我们提出了一种基于自适应时间特征提取混合网络的新型跟踪器,即暹罗事件帧跟踪器(SiamEFT),它专注于RGBE多样时空特征的有效表示和利用。我们首先设计了一个自适应时间注意力模块,基于自适应时间权重将事件数据聚合到帧中,以增强信息表示。随后,设计了暹罗事件帧跟踪(SiamEF)模块和结合人工神经网络与脉冲神经网络的跨网络融合模块的混合网络,以有效提取和融合RGBE的时空特征。在两个RGBE数据集(VisEvent和COESOT)上进行的大量实验表明,SiamEFT的成功率分别为0.456和0.574,优于当前最先进的竞争方法,并且效率提高了2.3倍。这些结果验证了SiamEFT在多样且具有挑战性的场景中的卓越准确性和效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8d5/11338902/abf2da94506a/fnins-18-1453419-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验