Suppr超能文献

白蚁真菌品种通过多种酶和氧化反应实现植物生物质转化。

The Termite Fungal Cultivar Combines Diverse Enzymes and Oxidative Reactions for Plant Biomass Conversion.

机构信息

Group of Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany.

Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.

出版信息

mBio. 2021 Jun 29;12(3):e0355120. doi: 10.1128/mBio.03551-20. Epub 2021 Jun 15.

Abstract

Macrotermitine termites have domesticated fungi in the genus as their primary food source using predigested plant biomass. To access the full nutritional value of lignin-enriched plant biomass, the termite-fungus symbiosis requires the depolymerization of this complex phenolic polymer. While most previous work suggests that lignocellulose degradation is accomplished predominantly by the fungal cultivar, our current understanding of the underlying biomolecular mechanisms remains rudimentary. Here, we provide conclusive omics and activity-based evidence that employs not only a broad array of carbohydrate-active enzymes (CAZymes) but also a restricted set of oxidizing enzymes (manganese peroxidase, dye decolorization peroxidase, an unspecific peroxygenase, laccases, and aryl-alcohol oxidases) and Fenton chemistry for biomass degradation. We propose for the first time that induces hydroquinone-mediated Fenton chemistry (Fe + HO + H → Fe + OH + HO) using a herein newly described 2-methoxy-1,4-dihydroxybenzene (2-MHQ, compound 19)-based electron shuttle system to complement the enzymatic degradation pathways. This study provides a comprehensive depiction of how efficient biomass degradation by means of this ancient insect's agricultural symbiosis is accomplished. Fungus-growing termites have optimized the decomposition of recalcitrant plant biomass to access valuable nutrients by engaging in a tripartite symbiosis with complementary contributions from a fungal mutualist and a codiversified gut microbiome. This complex symbiotic interplay makes them one of the most successful and important decomposers for carbon cycling in Old World ecosystems. To date, most research has focused on the enzymatic contributions of microbial partners to carbohydrate decomposition. Here, we provide genomic, transcriptomic, and enzymatic evidence that also employs redox mechanisms, including diverse ligninolytic enzymes and a Fenton chemistry-based hydroquinone-catalyzed lignin degradation mechanism, to break down lignin-rich plant material. Insights into these efficient decomposition mechanisms reveal new sources of efficient ligninolytic agents applicable for energy generation from renewable sources.

摘要

大型白蚁以真菌属的被驯化真菌为主要食物来源,利用已消化的植物生物质。为了充分利用富含木质素的植物生物质的营养价值,白蚁-真菌共生体需要分解这种复杂的酚类聚合物。虽然大多数先前的工作表明木质纤维素的降解主要由真菌培养物完成,但我们对潜在的生物分子机制的理解仍然很初步。在这里,我们提供了明确的组学和基于活性的证据,证明 不仅使用了广泛的碳水化合物活性酶(CAZymes),还使用了一组有限的氧化酶(锰过氧化物酶、染料脱色过氧化物酶、非特异性过氧化物酶、漆酶和芳基-醇氧化酶)和芬顿化学来进行生物质降解。我们首次提出, 使用一种新描述的 2-甲氧基-1,4-二羟基苯(2-MHQ,化合物 19)为基础的电子穿梭系统诱导对苯二酚介导的芬顿化学(Fe + HO + H → Fe + OH + HO),以补充酶降解途径。这项研究提供了一个全面的描述,说明这种古老昆虫的农业共生体如何通过这种方式有效地降解生物质。 菌食性白蚁通过与真菌共生体和共同进化的肠道微生物组进行三方共生,优化了对难分解植物生物质的分解,以获取有价值的营养物质。这种复杂的共生相互作用使它们成为旧世界生态系统中最重要和最成功的碳循环分解者之一。迄今为止,大多数研究都集中在微生物伙伴对碳水化合物分解的酶贡献上。在这里,我们提供了基因组、转录组和酶学证据,证明 还利用了氧化还原机制,包括各种木质素降解酶和基于芬顿化学的对苯二酚催化木质素降解机制,来分解富含木质素的植物材料。对这些高效分解机制的深入了解揭示了新的高效木质素降解剂来源,可应用于可再生能源的发电。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d16/8262964/9c46a3570f9b/mbio.03551-20-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验