Suppr超能文献

软活性布朗粒子的相行为与表面张力

Phase behavior and surface tension of soft active Brownian particles.

作者信息

Lauersdorf Nicholas, Kolb Thomas, Moradi Moslem, Nazockdast Ehssan, Klotsa Daphne

机构信息

Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, USA.

Department of Chemistry, University of North Carolina at Chapel Hill, USA.

出版信息

Soft Matter. 2021 Jul 7;17(26):6337-6351. doi: 10.1039/d1sm00350j.

Abstract

We study quasi two-dimensional, monodisperse systems of active Brownian particles (ABPs) for a range of activities, stiffnesses, and densities. We develop a microscopic, analytical method for predicting the dense phase structure formed after motility-induced phase separation (MIPS) has occurred, including the dense cluster's area fraction, interparticle pressure, and radius. Our predictions are in good agreement with our Brownian dynamics simulations. We, then, derive a continuum model to investigate the relationship between the predicted interparticle pressure, the swim pressure, and the macroscopic pressure in the momentum equation. We find that formulating the point-wise macroscopic pressure as the interparticle pressure and modeling the particle activity through a spatially variant body force - as opposed to a volume-averaged swim pressure - results in consistent predictions of pressure in both the continuum model and the microscopic theory. This formulation of pressure also results in nearly zero surface tension for the phase separated domains, irrespective of activity, stiffness, and area fraction. Furthermore, using Brownian dynamics simulations and our continuum model, we showed that both the interface width and surface tension, are intrinsic characteristics of the system. On the other hand, if we were to exclude the body force induced by activity, we find that the resulting surface tension values are linearly dependent on the size of the simulation, in contrast to the statistical mechanical definition of surface tension.

摘要

我们研究了一系列活性、刚度和密度条件下的准二维单分散活性布朗粒子(ABP)系统。我们开发了一种微观分析方法,用于预测在运动诱导相分离(MIPS)发生后形成的密相结构,包括密相团簇的面积分数、粒子间压力和半径。我们的预测与布朗动力学模拟结果吻合良好。然后,我们推导了一个连续介质模型,以研究预测的粒子间压力、游动压力和动量方程中的宏观压力之间的关系。我们发现,将逐点宏观压力表示为粒子间压力,并通过空间变化的体力(而不是体积平均游动压力)对粒子活性进行建模,会在连续介质模型和微观理论中得出一致的压力预测。这种压力表述还会使相分离域的表面张力几乎为零,而与活性、刚度和面积分数无关。此外,通过布朗动力学模拟和我们的连续介质模型,我们表明界面宽度和表面张力都是系统的固有特性。另一方面,如果我们排除活性引起的体力,我们发现得到的表面张力值与模拟尺寸呈线性相关,这与表面张力的统计力学定义相反。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验