Suppr超能文献

爆发性黄色瘤模型揭示了内皮细胞内化和代谢乳糜微粒,导致血管外甘油三酯积累。

Eruptive xanthoma model reveals endothelial cells internalize and metabolize chylomicrons, leading to extravascular triglyceride accumulation.

机构信息

Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA.

Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA.

出版信息

J Clin Invest. 2021 Jun 15;131(12). doi: 10.1172/JCI145800.

Abstract

Although tissue uptake of fatty acids from chylomicrons is primarily via lipoprotein lipase (LpL) hydrolysis of triglycerides (TGs), studies of patients with genetic LpL deficiency suggest additional pathways deliver dietary lipids to tissues. Despite an intact endothelial cell (EC) barrier, hyperchylomicronemic patients accumulate chylomicron-derived lipids within skin macrophages, leading to the clinical finding eruptive xanthomas. We explored whether an LpL-independent pathway exists for transfer of circulating lipids across the EC barrier. We found that LpL-deficient mice had a marked increase in aortic EC lipid droplets before and after a fat gavage. Cultured ECs internalized chylomicrons, which were hydrolyzed within lysosomes. The products of this hydrolysis fueled lipid droplet biogenesis in ECs and triggered lipid accumulation in cocultured macrophages. EC chylomicron uptake was inhibited by competition with HDL and knockdown of the scavenger receptor-BI (SR-BI). In vivo, SR-BI knockdown reduced TG accumulation in aortic ECs and skin macrophages of LpL-deficient mice. Thus, ECs internalize chylomicrons, metabolize them in lysosomes, and either store or release their lipids. This latter process may allow accumulation of TGs within skin macrophages and illustrates a pathway that might be responsible for creation of eruptive xanthomas.

摘要

尽管乳糜微粒中的脂肪酸摄取主要通过脂蛋白脂肪酶(LpL)水解甘油三酯(TGs),但对遗传性 LpL 缺乏症患者的研究表明,其他途径可将膳食脂质输送到组织中。尽管内皮细胞(EC)屏障完整,但高乳糜微粒血症患者的皮肤巨噬细胞中会积累乳糜微粒衍生的脂质,导致临床发现发疹性黄色瘤。我们探讨了是否存在 LpL 独立的途径来实现循环脂质穿过 EC 屏障的转移。我们发现,脂肪灌胃前后,LpL 缺乏的小鼠主动脉 EC 中的脂滴明显增加。培养的 EC 摄取乳糜微粒,这些乳糜微粒在溶酶体中被水解。这种水解的产物为 EC 中的脂滴生物发生提供燃料,并引发共培养的巨噬细胞中的脂质积累。EC 摄取乳糜微粒可被与 HDL 的竞争和清道夫受体-BI(SR-BI)的敲低所抑制。在体内,SR-BI 的敲低可减少 LpL 缺乏的小鼠主动脉 EC 和皮肤巨噬细胞中的 TG 积累。因此,EC 摄取乳糜微粒,在溶酶体中代谢它们,并储存或释放它们的脂质。这个后一个过程可能会导致皮肤巨噬细胞中的 TG 积累,并说明了可能导致发疹性黄色瘤形成的途径。

相似文献

3
Uptake and degradation of human chylomicrons by macrophages in culture. Role of lipoprotein lipase.
Arteriosclerosis. 1983 Sep-Oct;3(5):433-40. doi: 10.1161/01.atv.3.5.433.
5
Extracellular vesicles from chylomicron-treated endothelial cells drive macrophage inflammation.
bioRxiv. 2025 Mar 3:2025.02.28.640926. doi: 10.1101/2025.02.28.640926.
8
The tissue distribution of lipoprotein lipase determines where chylomicrons bind.
J Lipid Res. 2015 Mar;56(3):588-598. doi: 10.1194/jlr.M056028. Epub 2015 Jan 14.
9
The VLDL receptor plays a major role in chylomicron metabolism by enhancing LPL-mediated triglyceride hydrolysis.
J Lipid Res. 2004 Aug;45(8):1475-81. doi: 10.1194/jlr.M400009-JLR200. Epub 2004 May 16.

引用本文的文献

1
2
Apolipoprotein B-containing lipoproteins in atherogenesis.
Nat Rev Cardiol. 2025 Jun;22(6):399-413. doi: 10.1038/s41569-024-01111-0. Epub 2025 Jan 2.
3
Intracellular endothelial cell metabolism in vascular function and dysfunction.
Trends Endocrinol Metab. 2024 Dec 12. doi: 10.1016/j.tem.2024.11.004.
4
Hyperchylomicronemia causes endothelial cell inflammation and increases atherosclerosis.
Res Sq. 2024 Nov 25:rs.3.rs-5451391. doi: 10.21203/rs.3.rs-5451391/v1.
5
Distinct roles of size-defined HDL subpopulations in cardiovascular disease.
Curr Opin Lipidol. 2025 Jun 1;36(3):111-118. doi: 10.1097/MOL.0000000000000959. Epub 2024 Oct 25.
6
Imbalance of APOB Lipoproteins and Large HDL in Type 1 Diabetes Drives Atherosclerosis.
Circ Res. 2024 Jul 5;135(2):335-349. doi: 10.1161/CIRCRESAHA.123.323100. Epub 2024 Jun 3.
7
In the Beginning, Lipoproteins Cross the Endothelial Barrier.
J Atheroscler Thromb. 2024 Jun 1;31(6):854-860. doi: 10.5551/jat.RV22017. Epub 2024 Apr 13.
8
Intracellular lipase and regulation of the lipid droplet.
Curr Opin Lipidol. 2024 Apr 1;35(2):85-92. doi: 10.1097/MOL.0000000000000918. Epub 2024 Feb 15.
9
Dynamic metabolism of endothelial triglycerides protects against atherosclerosis in mice.
J Clin Invest. 2024 Jan 4;134(4):e170453. doi: 10.1172/JCI170453.

本文引用的文献

1
Lysosomal lipoprotein processing in endothelial cells stimulates adipose tissue thermogenic adaptation.
Cell Metab. 2021 Mar 2;33(3):547-564.e7. doi: 10.1016/j.cmet.2020.12.001. Epub 2020 Dec 22.
2
Single-Cell Analysis of the Normal Mouse Aorta Reveals Functionally Distinct Endothelial Cell Populations.
Circulation. 2019 Jul 9;140(2):147-163. doi: 10.1161/CIRCULATIONAHA.118.038362. Epub 2019 May 31.
3
SR-B1 drives endothelial cell LDL transcytosis via DOCK4 to promote atherosclerosis.
Nature. 2019 May;569(7757):565-569. doi: 10.1038/s41586-019-1140-4. Epub 2019 Apr 24.
5
Endothelial Transcytosis of Lipoproteins in Atherosclerosis.
Front Cardiovasc Med. 2018 Sep 25;5:130. doi: 10.3389/fcvm.2018.00130. eCollection 2018.
6
Endothelial cell CD36 optimizes tissue fatty acid uptake.
J Clin Invest. 2018 Oct 1;128(10):4329-4342. doi: 10.1172/JCI99315. Epub 2018 Jul 26.
7
NanoSIMS Analysis of Intravascular Lipolysis and Lipid Movement across Capillaries and into Cardiomyocytes.
Cell Metab. 2018 May 1;27(5):1055-1066.e3. doi: 10.1016/j.cmet.2018.03.017.
8
SR-B1: A Unique Multifunctional Receptor for Cholesterol Influx and Efflux.
Annu Rev Physiol. 2018 Feb 10;80:95-116. doi: 10.1146/annurev-physiol-021317-121550. Epub 2017 Nov 10.
10
Autoantibodies against GPIHBP1 as a Cause of Hypertriglyceridemia.
N Engl J Med. 2017 Apr 27;376(17):1647-1658. doi: 10.1056/NEJMoa1611930. Epub 2017 Apr 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验