Suppr超能文献

填充弹性体:作为智能材料的机理与物理驱动建模及应用

Filled Elastomers: Mechanistic and Physics-Driven Modeling and Applications as Smart Materials.

作者信息

Xian Weikang, Zhan You-Shu, Maiti Amitesh, Saab Andrew P, Li Ying

机构信息

Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.

Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.

出版信息

Polymers (Basel). 2024 May 13;16(10):1387. doi: 10.3390/polym16101387.

Abstract

Elastomers are made of chain-like molecules to form networks that can sustain large deformation. Rubbers are thermosetting elastomers that are obtained from irreversible curing reactions. Curing reactions create permanent bonds between the molecular chains. On the other hand, thermoplastic elastomers do not need curing reactions. Incorporation of appropriated filler particles, as has been practiced for decades, can significantly enhance mechanical properties of elastomers. However, there are fundamental questions about polymer matrix composites (PMCs) that still elude complete understanding. This is because the macroscopic properties of PMCs depend not only on the overall volume fraction (ϕ) of the filler particles, but also on their spatial distribution (i.e., primary, secondary, and tertiary structure). This work aims at reviewing how the mechanical properties of PMCs are related to the microstructure of filler particles and to the interaction between filler particles and polymer matrices. Overall, soft rubbery matrices dictate the elasticity/hyperelasticity of the PMCs while the reinforcement involves polymer-particle interactions that can significantly influence the mechanical properties of the polymer matrix interface. For ϕ values higher than a threshold, percolation of the filler particles can lead to significant reinforcement. While viscoelastic behavior may be attributed to the soft rubbery component, inelastic behaviors like the Mullins and Payne effects are highly correlated to the microstructures of the polymer matrix and the filler particles, as well as that of the polymer-particle interface. Additionally, the incorporation of specific filler particles within intelligently designed polymer systems has been shown to yield a variety of functional and responsive materials, commonly termed smart materials. We review three types of smart PMCs, i.e., magnetoelastic (M-), shape-memory (SM-), and self-healing (SH-) PMCs, and discuss the constitutive models for these smart materials.

摘要

弹性体由链状分子构成网络结构,能够承受大变形。橡胶是通过不可逆固化反应得到的热固性弹性体。固化反应在分子链之间形成永久键。另一方面,热塑性弹性体不需要固化反应。几十年来一直采用的添加适当的填料颗粒,可以显著提高弹性体的力学性能。然而,关于聚合物基复合材料(PMC)仍存在一些基本问题,尚未完全理解。这是因为PMC的宏观性能不仅取决于填料颗粒的总体积分数(ϕ),还取决于它们的空间分布(即一级、二级和三级结构)。这项工作旨在综述PMC的力学性能如何与填料颗粒的微观结构以及填料颗粒与聚合物基体之间的相互作用相关。总体而言,软橡胶基体决定了PMC的弹性/超弹性,而增强作用涉及聚合物-颗粒相互作用,这会显著影响聚合物基体界面的力学性能。对于高于阈值的ϕ值,填料颗粒的渗滤会导致显著的增强作用。虽然粘弹性行为可能归因于软橡胶组分,但诸如穆林斯效应和佩恩效应等非弹性行为与聚合物基体、填料颗粒以及聚合物-颗粒界面的微观结构高度相关。此外,在智能设计的聚合物体系中加入特定的填料颗粒已被证明能产生各种功能和响应性材料,通常称为智能材料。我们综述了三种类型的智能PMC,即磁弹性(M-)、形状记忆(SM-)和自修复(SH-)PMC,并讨论了这些智能材料的本构模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0f7/11125212/8df0e5f1d034/polymers-16-01387-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验