Biological Systems Engineering Laboratory, Department of Chemical Engineering, Imperial College London, London, United Kingdom.
Faculty of Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, Australia.
Tissue Eng Part A. 2022 Jan;28(1-2):38-53. doi: 10.1089/ten.TEA.2021.0028. Epub 2021 Sep 29.
Cellular microenvironments provide stimuli, including paracrine and autocrine growth factors and physicochemical cues, which support efficient cell production unmatched by current biomanufacturing platforms. While three-dimensional (3D) culture systems aim to recapitulate niche architecture and function of the target tissue/organ, they are limited in accessing spatiotemporal information to evaluate and optimize cell/tissue process development. Herein, a mathematical modeling framework is parameterized by single-cell phenotypic imaging and multiplexed biochemical assays to simulate the nonuniform tissue distribution of nutrients/metabolites and growth factors in cell niche environments. This model is applied to a bone marrow mimicry 3D perfusion bioreactor containing dense stromal and hematopoietic tissue with limited red blood cell (RBC) egress. The model characterized an imbalance between endogenous cytokine production and nutrient starvation within the microenvironmental niches and recommended increased cell inoculum density and enhanced medium exchange, guiding the development of a miniaturized prototype bioreactor. The second-generation prototype improved the distribution of nutrients and growth factors and supported a 50-fold increase in RBC production efficiency. This image-informed bioprocess modeling framework leverages spatiotemporal niche information to enhance biochemical factor utilization and improve cell manufacturing in 3D systems. Impact statement Three-dimensional (3D) culture systems are becoming increasingly important because they recapitulate the architecture and, consequently, physiological function of the target tissue/organ. Design and optimization of these 3D biomanufacturing platforms require evaluation of spatiotemporal information. We have developed an integrated experimental-computational framework that captures the spatiotemporal distribution of cells, nutrients, and cytokines within a marrow biomimicry perfusion bioreactor. The model simulated biochemical factor utilization and guided the design of an improved second-generation bioreactor that achieved 50-fold increase in RBC production with improved cost efficiency. Such a modeling framework provides an essential platform for the optimization of 3D biomanufacturing systems.
细胞微环境提供刺激,包括旁分泌和自分泌生长因子和物理化学线索,支持高效的细胞生产,这是当前生物制造平台无法比拟的。虽然三维(3D)培养系统旨在重现目标组织/器官的小生境结构和功能,但它们在获取时空信息以评估和优化细胞/组织过程开发方面存在局限性。在此,通过单细胞表型成像和多指标生化分析对数学建模框架进行参数化,以模拟细胞生态位环境中营养物质/代谢物和生长因子的非均匀组织分布。该模型应用于包含致密基质和造血组织且红细胞(RBC)逸出有限的骨髓模拟 3D 灌注生物反应器。该模型描述了微环境小生境中内源性细胞因子产生和营养饥饿之间的不平衡,并建议增加细胞接种密度和增强培养基交换,从而指导小型化原型生物反应器的开发。第二代原型改善了营养物质和生长因子的分布,并支持 RBC 生产效率提高 50 倍。这种基于图像的生物过程建模框架利用时空小生境信息来增强生化因子的利用并改善 3D 系统中的细胞制造。 影响陈述 三维(3D)培养系统变得越来越重要,因为它们再现了目标组织/器官的结构,进而再现了其生理功能。这些 3D 生物制造平台的设计和优化需要评估时空信息。我们已经开发了一种集成的实验计算框架,该框架可以捕获骨髓仿生灌注生物反应器中细胞、营养物质和细胞因子的时空分布。该模型模拟了生化因子的利用,并指导了第二代生物反应器的设计,该生物反应器的 RBC 产量提高了 50 倍,成本效率也得到了提高。这种建模框架为 3D 生物制造系统的优化提供了一个重要的平台。