School of Psychology and Institute of Neuroscience, Trinity College Dublin, Dublin, D02 PN40, Ireland.
School of Psychology, Cardiff University, Cardiff, CF10 3AS, United Kingdom.
J Neurosci. 2021 Jul 28;41(30):6511-6525. doi: 10.1523/JNEUROSCI.2868-20.2021. Epub 2021 Jun 15.
Just as hippocampal lesions are principally responsible for "temporal lobe" amnesia, lesions affecting the anterior thalamic nuclei seem principally responsible for a similar loss of memory, "diencephalic" amnesia. Compared with the former, the causes of diencephalic amnesia have remained elusive. A potential clue comes from how the two sites are interconnected, as within the hippocampal formation, only the subiculum has direct, reciprocal connections with the anterior thalamic nuclei. We found that both permanent and reversible anterior thalamic nuclei lesions in male rats cause a cessation of subicular spatial signaling, reduce spatial memory performance to chance, but leave hippocampal CA1 place cells largely unaffected. We suggest that a core element of diencephalic amnesia stems from the information loss in hippocampal output regions following anterior thalamic pathology. At present, we know little about interactions between temporal lobe and diencephalic memory systems. Here, we focused on the subiculum, as the sole hippocampal formation region directly interconnected with the anterior thalamic nuclei. We combined reversible and permanent lesions of the anterior thalamic nuclei, electrophysiological recordings of the subiculum, and behavioral analyses. Our results were striking and clear: following permanent thalamic lesions, the diverse spatial signals normally found in the subiculum (including place cells, grid cells, and head-direction cells) all disappeared. Anterior thalamic lesions had no discernible impact on hippocampal CA1 place fields. Thus, spatial firing activity within the subiculum requires anterior thalamic function, as does successful spatial memory performance. Our findings provide a key missing part of the much bigger puzzle concerning why anterior thalamic damage is so catastrophic for spatial memory in rodents and episodic memory in humans.
正如海马体损伤主要导致“颞叶”遗忘症一样,影响前丘脑核的损伤似乎主要导致类似的记忆丧失,即“间脑”遗忘症。与前者相比,间脑遗忘症的原因仍然难以捉摸。一个潜在的线索来自于这两个部位是如何相互联系的,因为在海马体结构中,只有下托只有与前丘脑核的直接、相互的连接。我们发现,雄性大鼠的永久性和可逆性前丘脑核损伤都会导致下托空间信号的停止,将空间记忆表现降低到随机水平,但对海马体 CA1 位置细胞的影响不大。我们认为,间脑遗忘症的一个核心要素源于前丘脑病变后海马体输出区域的信息丢失。目前,我们对颞叶和间脑记忆系统之间的相互作用知之甚少。在这里,我们专注于下托,因为它是唯一与前丘脑核直接相互连接的海马体结构区域。我们结合了前丘脑核的可逆性和永久性损伤、下托的电生理记录和行为分析。我们的结果引人注目且清晰:永久性丘脑损伤后,下托中通常发现的各种空间信号(包括位置细胞、网格细胞和头方向细胞)都消失了。前丘脑损伤对海马体 CA1 位置场没有明显影响。因此,下托内的空间发射活动需要前丘脑功能,成功的空间记忆表现也是如此。我们的发现提供了一个关键的缺失部分,这个更大的谜题是为什么前丘脑损伤对啮齿动物的空间记忆和人类的情景记忆如此灾难性。