Zheng Guolin, Wang Maoyuan, Zhu Xiangde, Tan Cheng, Wang Jie, Albarakati Sultan, Aloufi Nuriyah, Algarni Meri, Farrar Lawrence, Wu Min, Yao Yugui, Tian Mingliang, Zhou Jianhui, Wang Lan
School of Science, RMIT University, Melbourne, VIC, 3001, Australia.
Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China.
Nat Commun. 2021 Jun 15;12(1):3639. doi: 10.1038/s41467-021-23658-z.
Dzyaloshinskii-Moriya interaction (DMI) is vital to form various chiral spin textures, novel behaviors of magnons and permits their potential applications in energy-efficient spintronic devices. Here, we realize a sizable bulk DMI in a transition metal dichalcogenide (TMD) 2H-TaS by intercalating Fe atoms, which form the chiral supercells with broken spatial inversion symmetry and also act as the source of magnetic orderings. Using a newly developed protonic gate technology, gate-controlled protons intercalation could further change the carrier density and intensely tune DMI via the Ruderman-Kittel-Kasuya-Yosida mechanism. The resultant giant topological Hall resistivity [Formula: see text] of [Formula: see text] at [Formula: see text] (about [Formula: see text] larger than the zero-bias value) is larger than most known chiral magnets. Theoretical analysis indicates that such a large topological Hall effect originates from the two-dimensional Bloch-type chiral spin textures stabilized by DMI, while the large anomalous Hall effect comes from the gapped Dirac nodal lines by spin-orbit interaction. Dual-intercalation in 2H-TaS provides a model system to reveal the nature of DMI in the large family of TMDs and a promising way of gate tuning of DMI, which further enables an electrical control of the chiral spin textures and related electromagnetic phenomena.
Dzyaloshinskii-Moriya相互作用(DMI)对于形成各种手性自旋织构、磁振子的新奇行为至关重要,并使其在节能自旋电子器件中具有潜在应用价值。在此,我们通过插入铁原子在过渡金属二硫属化物(TMD)2H-TaS中实现了可观的体DMI,铁原子形成了具有破缺空间反演对称性的手性超胞,并且还充当磁有序的来源。使用新开发的质子门技术,门控质子插入可以进一步改变载流子密度,并通过Ruderman-Kittel-Kasuya-Yosida机制强烈调节DMI。在[具体温度]时得到的巨大拓扑霍尔电阻率[公式:见原文]为[具体数值](比零偏置值大[具体倍数]),大于大多数已知的手性磁体。理论分析表明,如此大的拓扑霍尔效应源于由DMI稳定的二维布洛赫型手性自旋织构,而大的反常霍尔效应则来自自旋轨道相互作用产生的带隙狄拉克节线。2H-TaS中的双插入提供了一个模型系统,以揭示TMD大家族中DMI的本质,以及一种有前景的DMI门控方法,这进一步实现了对手性自旋织构和相关电磁现象的电学控制。