Department of Physics, KAIST, Daejeon, Republic of Korea.
Department of Materials Science and Engineering, KAIST, Daejeon, Republic of Korea.
Nature. 2022 Nov;611(7934):48-54. doi: 10.1038/s41586-022-05229-4. Epub 2022 Oct 12.
Optical vortices are beams of light that carry orbital angular momentum, which represents an extra degree of freedom that can be generated and manipulated for photonic applications. Unlike vortices in other physical entities, the generation of optical vortices requires structural singularities, but this affects their quasiparticle nature and hampers the possibility of altering their dynamics or making them interacting. Here we report a platform that allows the spontaneous generation and active manipulation of an optical vortex-antivortex pair using an external field. An aluminium/silicon dioxide/nickel/silicon dioxide multilayer structure realizes a gradient-thickness optical cavity, where the magneto-optic effects of the nickel layer affect the transition between a trivial and a non-trivial topological phase. Rather than a structural singularity, the vortex-antivortex pairs present in the light reflected by our device are generated through mathematical singularities in the generalized parameter space of the top and bottom silicon dioxide layers, which can be mapped onto real space and exhibit polarization-dependent and topology-dependent dynamics driven by external magnetic fields. We expect that the field-induced engineering of optical vortices that we report will facilitate the study of topological photonic interactions and inspire further efforts to bestow quasiparticle-like properties to various topological photonic textures such as toroidal vortices, polarization and vortex knots, and optical skyrmions.
光学涡旋是携带轨道角动量的光束,它代表了一种额外的自由度,可以用于光子学应用。与其他物理实体中的涡旋不同,光学涡旋的产生需要结构奇点,但这会影响它们的准粒子性质,并阻碍改变其动力学或使其相互作用的可能性。在这里,我们报告了一个平台,该平台使用外部场允许自发产生和主动操纵光学涡旋-反涡旋对。铝/二氧化硅/镍/二氧化硅多层结构实现了梯度厚度的光学腔,其中镍层的磁光效应影响了平凡和非平凡拓扑相之间的转变。我们器件反射光中的涡旋-反涡旋对不是通过结构奇点产生的,而是通过上下二氧化硅层的广义参数空间中的数学奇点产生的,这些奇点可以映射到实空间,并表现出由外部磁场驱动的偏振相关和拓扑相关动力学。我们预计,我们报告的这种场诱导光学涡旋工程将有助于研究拓扑光子相互作用,并激发进一步努力,赋予各种拓扑光子结构(如环形涡旋、偏振和涡旋结,以及光学斯格明子)类准粒子的性质。