Suppr超能文献

计算变异:非靶向代谢组学中由自动数据处理导致的研究不足的定量变异性

Computational Variation: An Underinvestigated Quantitative Variability Caused by Automated Data Processing in Untargeted Metabolomics.

作者信息

Yu Huaxu, Chen Ying, Huan Tao

机构信息

Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver Campus, 2036 Main Mall, Vancouver V6T 1Z1, British Columbia, Canada.

出版信息

Anal Chem. 2021 Jun 16. doi: 10.1021/acs.analchem.0c03381.

Abstract

Computational tools are commonly used in untargeted metabolomics to automatically extract metabolic features from liquid chromatography-mass spectrometry (LC-MS) raw data. However, due to the incapability of software to accurately determine chromatographic peak heights/areas for features with poor chromatographic peak shape, automated data processing in untargeted metabolomics faces additional quantitative variation (i.e., computational variation) besides the well-recognized analytical and biological variations. In this work, using multiple biological samples, we investigated how experimental factors, including sample concentrations, LC separation columns, and data processing programs, contribute to computational variation. For example, we found that the peak height (PH)-based quantification is more precise when MS-DIAL was used for data processing. We further systematically compared the different patterns of computational variation between PH- and peak area (PA)-based quantitative measurements. Our results suggest that the magnitude of computational variation is highly consistent at a given concentration. Hence, we proposed a quality control (QC) sample-based correction workflow to minimize computational variation by automatically selecting PH or PA-based measurement for each intensity value. This bioinformatic solution was demonstrated in a metabolomic comparison of leukemia patients before and after chemotherapy. Our novel workflow can be effectively applied on 652 out of 915 metabolic features, and over 31% (206 out of 652) of corrected features showed distinctly changed statistical significance. Overall, this work highlights computational variation, a considerable but underinvestigated quantitative variability in omics-scale quantitative analyses. In addition, the proposed bioinformatic solution can minimize computational variation, thus providing a more confident statistical comparison among biological groups in quantitative metabolomics.

摘要

计算工具常用于非靶向代谢组学,以从液相色谱 - 质谱(LC-MS)原始数据中自动提取代谢特征。然而,由于软件无法准确确定色谱峰形不佳的特征的色谱峰高/面积,非靶向代谢组学中的自动化数据处理除了公认的分析和生物学变异外,还面临额外的定量变异(即计算变异)。在这项工作中,我们使用多个生物样本,研究了包括样品浓度、液相色谱分离柱和数据处理程序在内的实验因素如何导致计算变异。例如,我们发现使用MS-DIAL进行数据处理时,基于峰高(PH)的定量更精确。我们进一步系统地比较了基于PH和峰面积(PA)的定量测量之间计算变异的不同模式。我们的结果表明,在给定浓度下,计算变异的幅度高度一致。因此,我们提出了一种基于质量控制(QC)样品的校正工作流程,通过为每个强度值自动选择基于PH或PA的测量来最小化计算变异。这种生物信息学解决方案在白血病患者化疗前后的代谢组学比较中得到了验证。我们的新工作流程可有效地应用于915个代谢特征中的652个,并且超过31%(652个中的206个)校正后的特征显示出明显变化的统计显著性。总体而言,这项工作突出了计算变异,这是组学规模定量分析中一个相当大但研究不足的定量变异性。此外,所提出的生物信息学解决方案可以最小化计算变异,从而在定量代谢组学中为生物组之间提供更可靠的统计比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验