Max Planck Institute for Heart and Lung Research, Laboratory for Cell Polarity and Organogenesis, Bad Nauheim, Germany.
DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, Philipps-Universität Marburg, Marburg, Germany.
PLoS Comput Biol. 2021 Jun 16;17(6):e1008398. doi: 10.1371/journal.pcbi.1008398. eCollection 2021 Jun.
Blood flow governs transport of oxygen and nutrients into tissues. Hypoxic tissues secrete VEGFs to promote angiogenesis during development and in tissue homeostasis. In contrast, tumors enhance pathologic angiogenesis during growth and metastasis, suggesting suppression of tumor angiogenesis could limit tumor growth. In line with these observations, various factors have been identified to control vessel formation in the last decades. However, their impacts on the vascular transport properties of oxygen remain elusive. Here, we take a computational approach to examine the effects of vascular branching on blood flow in the growing vasculature. First of all, we reconstruct a 3D vascular model from the 2D confocal images of the growing vasculature at postnatal day 5 (P5) mouse retina, then simulate blood flow in the vasculatures, which are obtained from the gene targeting mouse models causing hypo- or hyper-branching vascular formation. Interestingly, hyper-branching morphology attenuates effective blood flow at the angiogenic front, likely promoting tissue hypoxia. In contrast, vascular hypo-branching enhances blood supply at the angiogenic front of the growing vasculature. Oxygen supply by newly formed blood vessels improves local hypoxia and decreases VEGF expression at the angiogenic front during angiogenesis. Consistent with the simulation results indicating improved blood flow in the hypo-branching vasculature, VEGF expression around the angiogenic front is reduced in those mouse retinas. Conversely, VEGF expression is enhanced in the angiogenic front of hyper-branching vasculature. Our results indicate the importance of detailed flow analysis in evaluating the vascular transport properties of branching morphology of the blood vessels.
血流控制着氧气和营养物质向组织的输送。在发育过程中和组织稳态中,缺氧组织会分泌 VEGFs 以促进血管生成。相比之下,肿瘤在生长和转移过程中增强病理性血管生成,表明抑制肿瘤血管生成可能会限制肿瘤生长。与这些观察结果一致,在过去几十年中已经确定了各种因素来控制血管形成。然而,它们对氧气的血管运输特性的影响仍不清楚。在这里,我们采用计算方法来研究血管分支对生长中的脉管系统中血流的影响。首先,我们从出生后 5 天(P5)小鼠视网膜生长中的血管的 2D 共聚焦图像重建 3D 血管模型,然后模拟来自基因靶向小鼠模型的血管中的血流,这些模型导致血管分支减少或增多。有趣的是,过度分支形态会减弱血管生成前沿的有效血流,可能会促进组织缺氧。相比之下,血管分支减少会增强生长中的脉管系统的血管生成前沿的血液供应。新形成的血管供应氧气改善了局部缺氧,并在血管生成过程中降低了血管生成前沿的 VEGF 表达。与模拟结果一致,表明分支血管中血流得到改善,那些小鼠视网膜中的血管生成前沿周围的 VEGF 表达减少。相反,VEGF 表达在过度分支血管的血管生成前沿增强。我们的结果表明,在评估血管分支形态的血管运输特性时,详细的流量分析很重要。