Suppr超能文献

利用术中内窥镜数字图像自动识别纯结石和混合结石。

Towards automatic recognition of pure and mixed stones using intra-operative endoscopic digital images.

机构信息

Department of Urology, CHU Pellegrin, Bordeaux, France.

Department of Multidisciplinary Functional Explorations, AP-HP, Tenon Hospital, INSERM UMRS 1155, Sorbonne University, Paris, France.

出版信息

BJU Int. 2022 Feb;129(2):234-242. doi: 10.1111/bju.15515. Epub 2021 Jul 14.

Abstract

OBJECTIVE

To assess automatic computer-aided in situ recognition of the morphological features of pure and mixed urinary stones using intra-operative digital endoscopic images acquired in a clinical setting.

MATERIALS AND METHODS

In this single-centre study, a urologist with 20 years' experience intra-operatively and prospectively examined the surface and section of all kidney stones encountered. Calcium oxalate monohydrate (COM) or Ia, calcium oxalate dihydrate (COD) or IIb, and uric acid (UA) or IIIb morphological criteria were collected and classified to generate annotated datasets. A deep convolutional neural network (CNN) was trained to predict the composition of both pure and mixed stones. To explain the predictions of the deep neural network model, coarse localization heat-maps were plotted to pinpoint key areas identified by the network.

RESULTS

This study included 347 and 236 observations of stone surface and stone section, respectively; approximately 80% of all stones exhibited only one morphological type and approximately 20% displayed two. A highest sensitivity of 98% was obtained for the type 'pure IIIb/UA' using surface images. The most frequently encountered morphology was that of the type 'pure Ia/COM'; it was correctly predicted in 91% and 94% of cases using surface and section images, respectively. Of the mixed type 'Ia/COM + IIb/COD', Ia/COM was predicted in 84% of cases using surface images, IIb/COD in 70% of cases, and both in 65% of cases. With regard to mixed Ia/COM + IIIb/UA stones, Ia/COM was predicted in 91% of cases using section images, IIIb/UA in 69% of cases, and both in 74% of cases.

CONCLUSIONS

This preliminary study demonstrates that deep CNNs are a promising method by which to identify kidney stone composition from endoscopic images acquired intra-operatively. Both pure and mixed stone composition could be discriminated. Collected in a clinical setting, surface and section images analysed by a deep CNN provide valuable information about stone morphology for computer-aided diagnosis.

摘要

目的

评估术中数字内窥镜图像自动计算机辅助识别纯和混合尿石形态特征。

材料与方法

在这项单中心研究中,一位具有 20 年手术经验的泌尿科医生对术中遇到的所有肾结石的表面和切面进行了前瞻性检查。收集并分类草酸钙一水合物(COM)或 Ia、草酸钙二水合物(COD)或 IIb 和尿酸(UA)或 IIIb 形态标准,以生成带注释的数据集。训练深度卷积神经网络(CNN)以预测纯和混合结石的成分。为了解释深度神经网络模型的预测,绘制了粗略的本地化热图,以精确定位网络识别的关键区域。

结果

这项研究分别包括 347 次和 236 次结石表面和结石切面观察;所有结石中约 80%仅表现出一种形态类型,约 20%表现出两种。使用表面图像,“纯 IIIb/UA 型”获得了最高 98%的灵敏度。最常见的形态是“纯 Ia/COM 型”;分别使用表面和切面图像,其正确预测率分别为 91%和 94%。在“混合 Ia/COM+IIb/COD 型”中,表面图像预测 Ia/COM 占 84%,COD 占 70%,两者均占 65%。对于混合 Ia/COM+IIIb/UA 结石,切面图像中预测 Ia/COM 占 91%,IIIb/UA 占 69%,两者均占 74%。

结论

这项初步研究表明,深度 CNN 是一种有前途的方法,可通过术中获取的内窥镜图像识别肾结石成分。可区分纯和混合结石成分。在临床环境中采集的表面和切面图像,由深度 CNN 分析,为计算机辅助诊断提供了有价值的结石形态信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c49/9292712/7bb057309129/BJU-129-234-g001.jpg

相似文献

1
Towards automatic recognition of pure and mixed stones using intra-operative endoscopic digital images.
BJU Int. 2022 Feb;129(2):234-242. doi: 10.1111/bju.15515. Epub 2021 Jul 14.
2
Deep morphological recognition of kidney stones using intra-operative endoscopic digital videos.
Phys Med Biol. 2022 Aug 16;67(16). doi: 10.1088/1361-6560/ac8592.
5
Deep learning computer vision algorithm for detecting kidney stone composition.
BJU Int. 2020 Jun;125(6):920-924. doi: 10.1111/bju.15035. Epub 2020 Mar 3.
6
Prediction of the composition of urinary stones using deep learning.
Investig Clin Urol. 2022 Jul;63(4):441-447. doi: 10.4111/icu.20220062. Epub 2022 May 25.
7
Determination of the chemical composition of urinary calculi by noncontrast spiral computerized tomography.
Urol Res. 2005 May;33(2):99-104. doi: 10.1007/s00240-004-0454-2. Epub 2005 Jan 6.
8
Evaluation and understanding of automated urinary stone recognition methods.
BJU Int. 2022 Dec;130(6):786-798. doi: 10.1111/bju.15767. Epub 2022 May 23.
9
Development of UroSAM: A Machine Learning Model to Automatically Identify Kidney Stone Composition from Endoscopic Video.
J Endourol. 2024 Aug;38(8):748-754. doi: 10.1089/end.2023.0740. Epub 2024 May 31.
10
On the rocks: can urologists identify stone composition based on endoscopic images alone? A worldwide survey of urologists.
World J Urol. 2023 Feb;41(2):575-579. doi: 10.1007/s00345-022-04269-9. Epub 2023 Jan 6.

引用本文的文献

1
Artificial intelligence in urolithiasis: a systematic review of utilization and effectiveness.
World J Urol. 2024 Oct 17;42(1):579. doi: 10.1007/s00345-024-05268-8.
2
Efficient urinary stone type prediction: a novel approach based on self-distillation.
Sci Rep. 2024 Oct 10;14(1):23718. doi: 10.1038/s41598-024-73923-6.
3
Investigation and quantification of composition variability in urinary stone analysis.
Investig Clin Urol. 2024 Sep;65(5):511-517. doi: 10.4111/icu.20240275.
6
Advancements in stone classification: unveiling the beauty of urolithiasis.
World J Urol. 2024 Jan 20;42(1):46. doi: 10.1007/s00345-023-04746-9.
9
Prediction of the composition of urinary stones using deep learning.
Investig Clin Urol. 2022 Jul;63(4):441-447. doi: 10.4111/icu.20220062. Epub 2022 May 25.

本文引用的文献

1
Assessing deep learning methods for the identification of kidney stones in endoscopic images.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:2778-2781. doi: 10.1109/EMBC46164.2021.9630211.
2
Classification of Stones According to Michel Daudon: A Narrative Review.
Eur Urol Focus. 2021 Jan;7(1):13-21. doi: 10.1016/j.euf.2020.11.004. Epub 2020 Dec 4.
4
Towards an automated classification method for ureteroscopic kidney stone images using ensemble learning.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1936-1939. doi: 10.1109/EMBC44109.2020.9176121.
5
EndoL2H: Deep Super-Resolution for Capsule Endoscopy.
IEEE Trans Med Imaging. 2020 Dec;39(12):4297-4309. doi: 10.1109/TMI.2020.3016744. Epub 2020 Nov 30.
6
Oral chemolysis is an effective, non-invasive therapy for urinary stones suspected of uric acid content.
Urolithiasis. 2020 Dec;48(6):501-507. doi: 10.1007/s00240-020-01204-8. Epub 2020 Aug 7.
7
Thulium fiber laser: ready to dust all urinary stone composition types?
World J Urol. 2021 Jun;39(6):1693-1698. doi: 10.1007/s00345-020-03217-9. Epub 2020 May 3.
8
Deep learning computer vision algorithm for detecting kidney stone composition.
BJU Int. 2020 Jun;125(6):920-924. doi: 10.1111/bju.15035. Epub 2020 Mar 3.
9
[The basis of endoscopic stones recognition, a prospective monocentric study].
Prog Urol. 2019 May-Jun;29(6):312-317. doi: 10.1016/j.purol.2019.04.002. Epub 2019 May 28.
10
Preclinical comparison of superpulse thulium fiber laser and a holmium:YAG laser for lithotripsy.
World J Urol. 2020 Feb;38(2):497-503. doi: 10.1007/s00345-019-02785-9. Epub 2019 May 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验