Suppr超能文献

高效尿石类型预测:一种基于自蒸馏的新方法。

Efficient urinary stone type prediction: a novel approach based on self-distillation.

机构信息

College of Quality and Technical Supervision, Hebei University, Baoding, China.

Scientific Research and Innovation Team of Hebei University, Baoding, China.

出版信息

Sci Rep. 2024 Oct 10;14(1):23718. doi: 10.1038/s41598-024-73923-6.

Abstract

Urolithiasis is a leading urological disorder where accurate preoperative identification of stone types is critical for effective treatment. Deep learning has shown promise in classifying urolithiasis from CT images, yet faces challenges with model size and computational efficiency in real clinical settings. To address these challenges, we developed a non-invasive prediction approach for determining urinary stone types based on CT images. Through the refinement and improvement of the self-distillation architecture, coupled with the incorporation of feature fusion and the Coordinate Attention Module (CAM), we facilitated a more effective and thorough knowledge transfer. This method circumvents the extra computational expenses and performance reduction linked with model compression and removes the reliance on external teacher models, markedly enhancing the efficacy of lightweight models. achieved a classification accuracy of 74.96% on a proprietary dataset, outperforming current techniques. Furthermore, our method demonstrated superior performance and generalizability on two public datasets. This not only validates the effectiveness of our approach in classifying urinary stones but also showcases its potential in other medical image processing tasks. These results further reinforce the feasibility of our model for actual clinical deployment, potentially assisting healthcare professionals in devising more precise treatment plans and reducing patient discomfort.

摘要

尿路结石是一种主要的泌尿系统疾病,术前准确识别结石类型对于有效治疗至关重要。深度学习在 CT 图像中对尿路结石进行分类方面显示出了巨大的潜力,但在实际临床环境中,面临着模型大小和计算效率的挑战。为了解决这些挑战,我们开发了一种基于 CT 图像的非侵入性预测方法,用于确定尿石类型。通过对自蒸馏架构的改进和完善,结合特征融合和坐标注意力模块(CAM)的应用,我们实现了更有效的和全面的知识转移。该方法避免了与模型压缩相关的额外计算成本和性能降低,并且无需依赖外部教师模型,显著提高了轻量级模型的效果。在一个专有的数据集上实现了 74.96%的分类准确率,优于当前的技术。此外,我们的方法在两个公共数据集上表现出了优越的性能和泛化能力。这不仅验证了我们的方法在分类尿路结石方面的有效性,还展示了它在其他医学图像处理任务中的潜力。这些结果进一步证实了我们的模型在实际临床部署中的可行性,可能有助于医疗保健专业人员制定更精确的治疗计划,减轻患者的不适。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ffb/11467342/a3d5797a64db/41598_2024_73923_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验