Li Bo, Saad David
Non-linearity and Complexity Research Group, Aston University, Birmingham, B4 7ET, United Kingdom.
Phys Rev E. 2021 May;103(5-1):052303. doi: 10.1103/PhysRevE.103.052303.
Infectious diseases that incorporate presymptomatic transmission are challenging to monitor, model, predict, and contain. We address this scenario by studying a variant of a stochastic susceptible-exposed-infected-recovered model on arbitrary network instances using an analytical framework based on the method of dynamic message passing. This framework provides a good estimate of the probabilistic evolution of the spread on both static and contact networks, offering a significantly improved accuracy with respect to individual-based mean-field approaches while requiring a much lower computational cost compared to numerical simulations. It facilitates the derivation of epidemic thresholds, which are phase boundaries separating parameter regimes where infections can be effectively contained from those where they cannot. These have clear implications on different containment strategies through topological (reducing contacts) and infection parameter changes (e.g., social distancing and wearing face masks), with relevance to the recent COVID-19 pandemic.
包含症状前传播的传染病在监测、建模、预测和控制方面具有挑战性。我们通过使用基于动态消息传递方法的分析框架,研究任意网络实例上的随机易感-暴露-感染-康复模型的一个变体来应对这种情况。该框架能很好地估计在静态网络和接触网络上传播的概率演变,与基于个体的平均场方法相比,提供了显著提高的准确性,同时与数值模拟相比需要低得多的计算成本。它有助于推导流行阈值,流行阈值是分隔参数区域的相位边界,在这些区域中感染可以被有效控制,而在其他区域则不能。这些通过拓扑结构(减少接触)和感染参数变化(例如,社交距离和戴口罩)对不同的控制策略有明确的影响,与近期的 COVID-19 大流行相关。