Suppr超能文献

概率性接触者追踪在疫情控制中的有效性:超级传播者的作用和传播路径重建

Effectiveness of probabilistic contact tracing in epidemic containment: The role of superspreaders and transmission path reconstruction.

作者信息

Muntoni Anna Paola, Mazza Fabio, Braunstein Alfredo, Catania Giovanni, Dall'Asta Luca

机构信息

Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy.

Statistical inference and computational biology, Italian Institute for Genomic Medicine, c/o IRCSS, Candiolo 10060, Italy.

出版信息

PNAS Nexus. 2024 Sep 3;3(9):pgae377. doi: 10.1093/pnasnexus/pgae377. eCollection 2024 Sep.

Abstract

The recent COVID-19 pandemic underscores the significance of early stage nonpharmacological intervention strategies. The widespread use of masks and the systematic implementation of contact tracing strategies provide a potentially equally effective and socially less impactful alternative to more conventional approaches, such as large-scale mobility restrictions. However, manual contact tracing faces strong limitations in accessing the network of contacts, and the scalability of currently implemented protocols for smartphone-based digital contact tracing becomes impractical during the rapid expansion phases of the outbreaks, due to the surge in exposure notifications and associated tests. A substantial improvement in digital contact tracing can be obtained through the integration of probabilistic techniques for risk assessment that can more effectively guide the allocation of diagnostic tests. In this study, we first quantitatively analyze the diagnostic and social costs associated with these containment measures based on contact tracing, employing three state-of-the-art models of SARS-CoV-2 spreading. Our results suggest that probabilistic techniques allow for more effective mitigation at a lower cost. Secondly, our findings reveal a remarkable efficacy of probabilistic contact-tracing techniques in performing backward and multistep tracing and capturing superspreading events.

摘要

近期的新冠疫情凸显了早期非药物干预策略的重要性。口罩的广泛使用以及接触者追踪策略的系统实施,为大规模行动限制等更传统的方法提供了一种可能同样有效且对社会影响较小的替代方案。然而,人工接触者追踪在获取接触网络方面面临严重限制,并且在疫情快速蔓延阶段,由于暴露通知和相关检测的激增,目前基于智能手机的数字接触者追踪协议的可扩展性变得不切实际。通过整合用于风险评估的概率技术,可以显著改进数字接触者追踪,这些技术能够更有效地指导诊断检测的分配。在本研究中,我们首先基于接触者追踪,采用三种最先进的新冠病毒传播模型,定量分析与这些防控措施相关的诊断和社会成本。我们的结果表明,概率技术能够以更低的成本实现更有效的缓解。其次,我们的研究结果揭示了概率接触者追踪技术在进行反向和多步追踪以及捕捉超级传播事件方面具有显著功效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验