Rocha Luis E C, Masuda Naoki
Department of Mathematics and naXys, Université de Namur, 8 Rempart de la Vierge, B-5000 Namur, Belgium.
Department of Public Health Sciences, Karolinska Institutet, 18A Tomtebodavägen, S-17177 Stockholm, Sweden.
Sci Rep. 2016 Aug 26;6:31456. doi: 10.1038/srep31456.
The dynamics of contact networks and epidemics of infectious diseases often occur on comparable time scales. Ignoring one of these time scales may provide an incomplete understanding of the population dynamics of the infection process. We develop an individual-based approximation for the susceptible-infected-recovered epidemic model applicable to arbitrary dynamic networks. Our framework provides, at the individual-level, the probability flow over time associated with the infection dynamics. This computationally efficient framework discards the correlation between the states of different nodes, yet provides accurate results in approximating direct numerical simulations. It naturally captures the temporal heterogeneities and correlations of contact sequences, fundamental ingredients regulating the timing and size of an epidemic outbreak, and the number of secondary infections. The high accuracy of our approximation further allows us to detect the index individual of an epidemic outbreak in real-life network data.
接触网络的动态变化和传染病的流行通常发生在可比的时间尺度上。忽略其中一个时间尺度可能会导致对感染过程的种群动态理解不完整。我们针对适用于任意动态网络的易感-感染-康复传染病模型开发了一种基于个体的近似方法。我们的框架在个体层面提供了与感染动态相关的随时间变化的概率流。这个计算效率高的框架舍弃了不同节点状态之间的相关性,但在近似直接数值模拟时能提供准确的结果。它自然地捕捉了接触序列的时间异质性和相关性,这些是调节疫情爆发时间、规模以及二次感染数量的基本要素。我们近似方法的高精度进一步使我们能够在现实网络数据中检测疫情爆发的指示个体。