Suppr超能文献

多排 CT 测量可切除结肠癌的肿瘤大小:与区域淋巴结转移和 N 分期的相关性。

Tumor size measured by multidetector CT in resectable colon cancer: correlation with regional lymph node metastasis and N stage.

机构信息

Department of Radiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, 32# Second Section of First Ring Rd, Qingyang District, Chengdu, 610072, China.

Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China.

出版信息

World J Surg Oncol. 2021 Jun 16;19(1):179. doi: 10.1186/s12957-021-02292-5.

Abstract

BACKGROUND

Lymph node metastasis (LNM) is a risk factor for poor long-term outcomes and a prognostic factor for disease-free survival in colon cancer. Preoperative lymph node status evaluation remains a challenge. The purpose of this study is to determine whether tumor size measured by multidetector computed tomography (MDCT) could be used to predict LNM and N stage in colon cancer.

MATERIAL AND METHODS

One hundred six patients with colon cancer who underwent radical surgery within 1 week of MDCT scan were enrolled. Tumor size including tumor length (Tlen), tumor maximum diameter (Tdia), tumor maximum cross-sectional area (Tare), and tumor volume (Tvol) were measured to be correlated with pathologic LNM and N stage using univariate logistic regression analysis, multivariate logistic analysis, and receiver operating characteristic (ROC) curve analysis.

RESULTS

The inter- and intraobserver reproducibility of Tlen (intraclass correlation coefficient [ICC] = 0.94, 0.95, respectively), Tdia (ICC = 0.81, 0.93, respectively), Tare (ICC = 0.97, 0.91, respectively), and Tvol (ICC = 0.99, 0.99, respectively) parameters measurement are excellent. Univariate logistic regression analysis showed that there were significant differences in Tlen, Tdia, Tare, and Tvol between positive and negative LNM (p < 0.001, 0.001, < 0.001, < 0.001, respectively). Multivariate logistic regression analysis revealed that Tvol was independent risk factor for predicting LNM (odds ratio, 1.082; 95% confidence interval for odds ratio, 1.039, 1.127, p<0.001). Tlen, Tdia, Tare, and Tvol could distinguish N0 from N1 stage (p < 0.001, 0.041, < 0.001, < 0.001, respectively), N0 from N2 (all p < 0.001), N0 from N1-2 (p < 0.001, 0.001, < 0.001, < 0.001, respectively), and N0-1 from N2 (p < 0.001, 0.001, < 0.001, < 0.001, respectively). The area under the ROC curve (AUC) was higher for Tvol than that of Tlen, Tdia, and Tare in identifying LNM (AUC = 0.83, 0.82, 0.69, 0.79), and distinguishing N0 from N1 stage (AUC = 0.79, 0.78, 0.63, 0.74), N0 from N2 stage (AUC = 0.92, 0.89, 0.80, 0.89, respectively), and N0-1 from N2 stage (AUC = 0.84, 0.79, 0.76, 0.83, respectively).

CONCLUSION

Tumor size was correlated with regional LNM in resectable colon cancer. In particularly, Tvol showed the most potential for noninvasive preoperative prediction of regional LNM and N stage.

摘要

背景

淋巴结转移(LNM)是结肠癌患者长期预后不良的危险因素,也是无病生存的预后因素。术前淋巴结状态评估仍然是一个挑战。本研究旨在确定多排螺旋 CT(MDCT)测量的肿瘤大小是否可用于预测结肠癌的 LNM 和 N 分期。

材料与方法

纳入 106 例在 MDCT 扫描后 1 周内接受根治性手术的结肠癌患者。使用单变量逻辑回归分析、多变量逻辑回归分析和受试者工作特征(ROC)曲线分析,测量肿瘤大小,包括肿瘤长度(Tlen)、肿瘤最大直径(Tdia)、肿瘤最大横截面积(Tare)和肿瘤体积(Tvol),并与病理 LNM 和 N 分期相关。

结果

Tlen(组内相关系数 [ICC] = 0.94、0.95)、Tdia(ICC = 0.81、0.93)、Tare(ICC = 0.97、0.91)和 Tvol(ICC = 0.99、0.99)参数测量的观察者内和观察者间重复性均极好。单变量逻辑回归分析显示,Tlen、Tdia、Tare 和 Tvol 在 LNM 阳性和阴性之间存在显著差异(p < 0.001、0.001、<0.001、<0.001)。多变量逻辑回归分析显示,Tvol 是预测 LNM 的独立危险因素(比值比,1.082;比值比的 95%置信区间,1.039、1.127,p<0.001)。Tlen、Tdia、Tare 和 Tvol 可区分 N0 与 N1 期(p < 0.001、0.041、<0.001、<0.001),N0 与 N2 期(均 p < 0.001),N0 与 N1-2 期(p < 0.001、0.001、<0.001、<0.001),N0-1 与 N2 期(p < 0.001、0.001、<0.001、<0.001)。Tvol 在识别 LNM(AUC = 0.83、0.82、0.69、0.79)和区分 N0 与 N1 期(AUC = 0.79、0.78、0.63、0.74)、N0 与 N2 期(AUC = 0.92、0.89、0.80、0.89)、N0-1 与 N2 期(AUC = 0.84、0.79、0.76、0.83)时,曲线下面积(AUC)均高于 Tlen、Tdia 和 Tare。

结论

肿瘤大小与可切除结肠癌的局部 LNM 相关。特别是,Tvol 最有可能用于非侵入性术前预测局部 LNM 和 N 分期。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10af/8210336/343eb5c76afe/12957_2021_2292_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验