Suppr超能文献

用于提高结肠癌患者分期准确性的淋巴结计算机断层扫描纹理分析

Computed Tomography Texture Analysis of Lymph Nodes for Improved Staging Accuracy in Patients with Colon Cancer.

作者信息

Leonhardi Jakob, Mehdorn Matthias, Stelzner Sigmar, Scheuermann Uwe, Höhn Anne-Kathrin, Seehofer Daniel, Denecke Timm, Meyer Hans-Jonas

机构信息

Department of Diagnostic and Interventional Radiology, University of Leipzig, Leipzig, Germany.

Department of Visceral and Transplantation Surgery, University Hospital Leipzig, University of Leipzig, Leipzig, Germany.

出版信息

Visc Med. 2025 May 14:1-8. doi: 10.1159/000546336.

Abstract

INTRODUCTION

Texture analysis can provide quantitative imaging markers and better characterize tumor tissue in oncological imaging. The present analysis investigated the diagnostic benefit of computed tomography (CT)-derived texture analysis to categorize and stage lymph nodes in patients with colon cancer.

METHODS

In this study, 85 patients were included ( = 39 females, 45.9%) with a mean age of 70.3 ± 14.8 years. All patients were surgically resected, and the lymph nodes were histopathologically analyzed. All investigated lymph nodes were further investigated with texture analysis using the MaZda package.

RESULTS

Out of a total of 279 extracted CT texture features, 7 parameters independently showed statistically significant differences between lymph node positive to negative ones. For instance, the texture parameter S(1,0)AngScMom showed statistically significant differences regarding lymph node metastasis status (0.007 ± 0.004 for N0 vs. 0.005 ± 0.001 for N1-2, = 0.001). A multivariate model was developed based on = 7 independent texture parameters. The diagnostic accuracy reached an area under the curve of 0.79 (95% CI: 0.69-0.89) with a sensitivity of 0.77 and a specificity of 0.70, resulting in an accuracy of 0.73.

DISCUSSION

Texture analysis can improve the diagnostic accuracy for nodal CT staging in patients with colon cancer. Further validation studies are needed to confirm the present results.

摘要

引言

纹理分析能够提供定量成像标志物,并在肿瘤成像中更好地表征肿瘤组织。本分析研究了计算机断层扫描(CT)衍生的纹理分析对结肠癌患者淋巴结进行分类和分期的诊断价值。

方法

本研究纳入了85例患者(39例女性,占45.9%),平均年龄为70.3±14.8岁。所有患者均接受了手术切除,并对淋巴结进行了组织病理学分析。使用MaZda软件包对所有研究的淋巴结进一步进行纹理分析。

结果

在总共提取的279个CT纹理特征中,7个参数在淋巴结阳性和阴性之间独立显示出统计学上的显著差异。例如,纹理参数S(1,0)AngScMom在淋巴结转移状态方面显示出统计学上的显著差异(N0为0.007±0.004,N1-2为0.005±0.001,P = 0.001)。基于7个独立的纹理参数建立了多变量模型。诊断准确性达到曲线下面积为0.79(95%置信区间:0.69-0.89),灵敏度为0.77,特异性为0.70,总准确率为0.73。

讨论

纹理分析可以提高结肠癌患者淋巴结CT分期的诊断准确性。需要进一步的验证研究来证实目前的结果。

相似文献

5
Intraoperative frozen section analysis for the diagnosis of early stage ovarian cancer in suspicious pelvic masses.
Cochrane Database Syst Rev. 2016 Mar 1;3(3):CD010360. doi: 10.1002/14651858.CD010360.pub2.
8
Computed tomography for the diagnosis of hepatocellular carcinoma in adults with chronic liver disease.
Cochrane Database Syst Rev. 2021 Oct 6;10(10):CD013362. doi: 10.1002/14651858.CD013362.pub2.
9
Effect of testing for cancer on cancer- or venous thromboembolism (VTE)-related mortality and morbidity in people with unprovoked VTE.
Cochrane Database Syst Rev. 2021 Oct 1;10(10):CD010837. doi: 10.1002/14651858.CD010837.pub5.
10
Thoracic imaging tests for the diagnosis of COVID-19.
Cochrane Database Syst Rev. 2022 May 16;5(5):CD013639. doi: 10.1002/14651858.CD013639.pub5.

本文引用的文献

3
Socioeconomic inequalities in cancer incidence and mortality: An analysis of GLOBOCAN 2022.
Chin Med J (Engl). 2024 Jun 20;137(12):1407-1413. doi: 10.1097/CM9.0000000000003140. Epub 2024 Apr 15.
4
Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.
CA Cancer J Clin. 2024 May-Jun;74(3):229-263. doi: 10.3322/caac.21834. Epub 2024 Apr 4.
5
T2WI-based texture analysis predicts preoperative lymph node metastasis of rectal cancer.
Abdom Radiol (NY). 2024 Jun;49(6):2008-2016. doi: 10.1007/s00261-024-04209-8. Epub 2024 Feb 27.
7
Preoperative assessment of grade, T stage, and lymph node involvement: machine learning-based CT texture analysis in colon cancer.
Jpn J Radiol. 2024 Mar;42(3):300-307. doi: 10.1007/s11604-023-01502-2. Epub 2023 Oct 24.
8
Diagnostic accuracy of CT for local staging of colon cancer: A nationwide study in the Netherlands.
Eur J Cancer. 2023 Nov;193:113314. doi: 10.1016/j.ejca.2023.113314. Epub 2023 Aug 25.
9
Deep learning to predict lymph node status on pre-operative staging CT in patients with colon cancer.
J Med Imaging Radiat Oncol. 2024 Feb;68(1):33-40. doi: 10.1111/1754-9485.13584. Epub 2023 Sep 19.
10
The Role of Radiomics in Rectal Cancer.
J Gastrointest Cancer. 2023 Dec;54(4):1158-1180. doi: 10.1007/s12029-022-00909-w. Epub 2023 May 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验