文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于负载亲脂性物质的固体脂质纳米粒开发的无刺蜂蜂胶特性研究与表征

Development and Characterization of Stingless Bee Propolis Properties for the Development of Solid Lipid Nanoparticles for Loading Lipophilic Substances.

作者信息

Khongkaew Putthiporn, Chaemsawang Watcharaphong

机构信息

Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmaceutical Science, Burapha University, 169 Long-Hard Bangsaen Road, Saen Sook Sub-District, Mueang District, Chonburi 20131, Thailand.

Department of Pharmaceutical Technology, Faculty of Pharmaceutical Science, Burapha University, 169 Long-Hard Bangsaen Road, Saen Sook Sub-District, Mueang District, Chonburi 20131, Thailand.

出版信息

Int J Biomater. 2021 May 28;2021:6662867. doi: 10.1155/2021/6662867. eCollection 2021.


DOI:10.1155/2021/6662867
PMID:34135970
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8177972/
Abstract

Stingless bees are insects which are popularly bred by agriculturists in the eastern region of Thailand for the pollination of their orchards. The products from stingless bee breeding include bee honey and bee propolis. The objective of this experiment is to study the possibility of developing stingless bee propolis wax into solid lipid nanoparticles (SLN) by the comparison of five surfactants (Brij 721, Cremophor WO 7, Myrj 52, Poloxamer 188, and Tween 80). Each surfactant is used at three concentrations: 10%, 20%, and 30%. A master formula is selected according to the following: physical features, particle size, zeta potential, and entrapment. The results showed that Brij 721 and Myri 52 at 20% can be used in preparing SLN and have good preservation properties for vitamin E (size: 451.2 nm and 416.8 nm, zeta potential: - 24.0 and - 32.7; % EE: 92.32% and 92.00%, resp.). Therefore, they are further developed by adding the following drugs at low solubility: curcumin, ibuprofen, and astaxanthin. It is found that a formula using the surfactants Brij 721 and Myrj 52 at 20% have similar drug entrapment. The entrapment study involves curcumin 82%, ibuprofen 40%, and astaxanthin 67%. Moreover, the cytotoxicity test of blank solid lipid nanoparticle found no toxicty in fibroblast cell line (CRL-2522). Therefore, from this study, it is determined that stingless bee propolis wax has the potential to be developed to provide more efficient SLN in the future.

摘要

无刺蜂是一种昆虫,在泰国东部地区受到农业从业者的广泛养殖,用于为其果园授粉。无刺蜂养殖的产品包括蜂蜜和蜂胶。本实验的目的是通过比较五种表面活性剂(Brij 721、Cremophor WO 7、Myrj 52、泊洛沙姆188和吐温80)来研究将无刺蜂蜂胶蜡制成固体脂质纳米粒(SLN)的可能性。每种表面活性剂使用三种浓度:10%、20%和30%。根据以下因素选择主配方:物理特性、粒径、zeta电位和包封率。结果表明,20%的Brij 721和Myrj 52可用于制备SLN,并且对维生素E具有良好的保存性能(粒径:451.2 nm和416.8 nm,zeta电位:-24.0和-32.7;包封率分别为92.32%和92.00%)。因此,通过添加以下低溶解度药物对其进行进一步开发:姜黄素、布洛芬和虾青素。发现使用20%的表面活性剂Brij 721和Myrj 52的配方具有相似的药物包封率。包封率研究涉及姜黄素82%、布洛芬40%和虾青素67%。此外,空白固体脂质纳米粒的细胞毒性测试在成纤维细胞系(CRL-2522)中未发现毒性。因此,从本研究可以确定,无刺蜂蜂胶蜡有潜力在未来开发出更高效的SLN。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3d4/8177972/59ea51542ddc/IJBM2021-6662867.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3d4/8177972/ba4adb1b6c6f/IJBM2021-6662867.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3d4/8177972/cf15e39d9b58/IJBM2021-6662867.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3d4/8177972/d739c7423c31/IJBM2021-6662867.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3d4/8177972/5c8855773cbc/IJBM2021-6662867.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3d4/8177972/1298b784b81b/IJBM2021-6662867.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3d4/8177972/b4ed1033d9c7/IJBM2021-6662867.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3d4/8177972/4f7961a18328/IJBM2021-6662867.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3d4/8177972/59ea51542ddc/IJBM2021-6662867.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3d4/8177972/ba4adb1b6c6f/IJBM2021-6662867.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3d4/8177972/cf15e39d9b58/IJBM2021-6662867.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3d4/8177972/d739c7423c31/IJBM2021-6662867.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3d4/8177972/5c8855773cbc/IJBM2021-6662867.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3d4/8177972/1298b784b81b/IJBM2021-6662867.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3d4/8177972/b4ed1033d9c7/IJBM2021-6662867.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3d4/8177972/4f7961a18328/IJBM2021-6662867.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3d4/8177972/59ea51542ddc/IJBM2021-6662867.008.jpg

相似文献

[1]
Development and Characterization of Stingless Bee Propolis Properties for the Development of Solid Lipid Nanoparticles for Loading Lipophilic Substances.

Int J Biomater. 2021-5-28

[2]
Cytotoxicity effect of honey, bee pollen, and propolis from seven stingless bees in some cancer cell lines.

Saudi J Biol Sci. 2021-12

[3]
Antioxidant-Based Medicinal Properties of Stingless Bee Products: Recent Progress and Future Directions.

Biomolecules. 2020-6-18

[4]
Melliferous insects and the uses assigned to their products in the northern Yungas of Salta, Argentina.

J Ethnobiol Ethnomed. 2018-4-11

[5]
Stingless Bee-Collected Pollen (Bee Bread): Chemical and Microbiology Properties and Health Benefits.

Molecules. 2021-2-11

[6]
Analysis of bioactive compounds and chemical composition of Malaysian stingless bee propolis water extracts.

Saudi J Biol Sci. 2021-12

[7]
A Preliminary Study of Chemical Profiles of Honey, Cerumen, and Propolis of the African Stingless Bee .

Foods. 2021-5-2

[8]
Lessons from Exploring Chemical Space and Chemical Diversity of Propolis Components.

Int J Mol Sci. 2020-7-15

[9]
Preparation, characterization and in vitro cytotoxicity assay of curcumin loaded solid lipid nanoparticle in IMR32 neuroblastoma cell line.

Pak J Pharm Sci. 2014-9

[10]
A review of stingless bees' bioactivity in different parts of the world.

J Med Life. 2023-1

引用本文的文献

[1]
seed extract exhibits neuroprotective effects against MPP‑induced apoptotic cell death via GSK‑3β in a Parkinson's disease model.

Biomed Rep. 2024-1-23

[2]
Dacarbazine-encapsulated solid lipid nanoparticles for skin cancer: physical characterization, stability, activity, histopathology, and immunohistochemistry.

Front Oncol. 2023-4-21

[3]
The Importance of Antioxidant Biomaterials in Human Health and Technological Innovation: A Review.

Antioxidants (Basel). 2022-8-24

[4]
Applications of Alginate-Based Nanomaterials in Enhancing the Therapeutic Effects of Bee Products.

Front Mol Biosci. 2022-4-11

[5]
Stingless Bee Propolis: New Insights for Anticancer Drugs.

Oxid Med Cell Longev. 2021

本文引用的文献

[1]
The Effect of Okra ( (L.) Moench) Seed Extract on Human Cancer Cell Lines Delivered in Its Native Form and Loaded in Polymeric Micelles.

Int J Biomater. 2019-10-21

[2]
Comparative analysis of the volatile composition of honeys from Brazilian stingless bees by static headspace GC-MS.

Food Res Int. 2017-9-12

[3]
Formulations based on solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for cutaneous use: A review.

Eur J Pharm Sci. 2017-11-26

[4]
Solid lipid nanoparticles for the controlled delivery of poorly water soluble non-steroidal anti-inflammatory drugs.

Ultrason Sonochem. 2017-8-19

[5]
Beyond liposomes: Recent advances on lipid based nanostructures for poorly soluble/poorly permeable drug delivery.

Prog Lipid Res. 2017-8-1

[6]
Drug solubility in lipid nanocarriers: Influence of lipid matrix and available interfacial area.

Int J Pharm. 2017-8-30

[7]
Biological properties of propolis extracts: Something new from an ancient product.

Chem Phys Lipids. 2017-10

[8]
Effect of drug solubility and lipid carrier on drug release from lipid nanoparticles for dermal delivery.

Eur J Pharm Biopharm. 2017-1

[9]
Gelucire-Based Nanoparticles for Curcumin Targeting to Oral Mucosa: Preparation, Characterization, and Antimicrobial Activity Assessment.

J Pharm Sci. 2015-11

[10]
Lipid nanoparticles for the topical delivery of retinoids and derivatives.

Nanomedicine (Lond). 2015-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索