文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于皮肤癌治疗的达卡巴嗪包封固体脂质纳米粒:物理表征、稳定性、活性、组织病理学及免疫组织化学

Dacarbazine-encapsulated solid lipid nanoparticles for skin cancer: physical characterization, stability, activity, histopathology, and immunohistochemistry.

作者信息

Bhattacharya Sankha, Sharma Satyam

机构信息

Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, India.

Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Export Promotion Industrial Park (EPIP), Hajipur, Bihar, India.

出版信息

Front Oncol. 2023 Apr 21;13:1102269. doi: 10.3389/fonc.2023.1102269. eCollection 2023.


DOI:10.3389/fonc.2023.1102269
PMID:37152046
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10160449/
Abstract

BACKGROUND: This study examined the use of solid lipid nanoparticles (SLNs) to administer Dacarbazine (DTIC) to skin melanoma cells with minimal adverse effects. Melanoma is a tricky skin cancer to cure, and standard chemotherapy has many negative effects. Encapsulating DTIC in SLNs may allow the drug to target melanoma cells without harming healthy cells. The study developed and tested DTIC-loaded SLNs for skin melanoma treatment. METHODS: This study encapsulated Dacarbazine (DTIC) in solid lipid nanoparticles (SLNs). SLNs with reversed micelles were produced utilizing specified ratios of the surfactant Kolliphor P188 and phosphatidylcholine. To track SLN drug localisation, gold nanoparticles were conjugated to the DTIC. Nanoparticle size and form were examined using DLS and TEM. These approaches ensured SLNs had the correct size and shape for drug delivery. SIGNIFICANT FINDINGS: In the study, various parameters of the developed solid lipid nanoparticles (SLNs) were evaluated, including particle size, zeta potential, polydispersity index (PDI), entrapment efficacy, and cumulative drug permeation. The values for these parameters varied across the different formulations, with particle size ranging from 146 ± 4.71 nm to 715 ± 7.36 nm, zeta potential from -12.45 ± 2.78 mV to -30.78 ± 2.83 mV, PDI from 0.17 ± 0.013 to 0.51 ± 0.023, entrapment efficacy from 37.78 ± 2.78% to 87.45 ± 4.78%, and cumulative drug permeation from 117 ± 4.77 μg/cm to 275 ± 5.67 μg/cm. To determine the optimal anti-cancer formulation, the DTIC-SLNs-8 nanoparticles were mixed with an optimized concentration of Gellan gum (0.01% w/v) and applied to DMBA-induced skin tumors in rats for six weeks, twice daily. Histopathology demonstrated that DTIC-SLNs-8-treated rats had less keratosis, inflammatory responses, and angiogenesis than free DTIC-treated rats. The development of SLNs may be a promising approach for melanoma treatment due to their improved drug retention over the skin. The optimised anti-cancer formulation DTIC-SLNs-8 showed improved efficacy with minimal side effects as compared to free DTIC.

摘要

背景:本研究考察了使用固体脂质纳米粒(SLNs)向皮肤黑色素瘤细胞给药达卡巴嗪(DTIC),以使其副作用最小化。黑色素瘤是一种难以治愈的皮肤癌,标准化疗有许多负面影响。将DTIC包裹在SLNs中可能使药物靶向黑色素瘤细胞而不损害健康细胞。该研究开发并测试了用于皮肤黑色素瘤治疗的载DTIC的SLNs。 方法:本研究将达卡巴嗪(DTIC)包裹在固体脂质纳米粒(SLNs)中。利用表面活性剂聚氧乙烯蓖麻油EL(Kolliphor P188)和磷脂酰胆碱的特定比例制备了具有反胶束的SLNs。为追踪SLN药物定位,将金纳米颗粒与DTIC偶联。使用动态光散射(DLS)和透射电子显微镜(TEM)检测纳米颗粒的大小和形态。这些方法确保SLNs具有适合药物递送的正确大小和形状。 重要发现:在该研究中,对所制备的固体脂质纳米粒(SLNs)的各种参数进行了评估,包括粒径、zeta电位、多分散指数(PDI)、包封率和药物累积渗透量。这些参数的值在不同制剂中有所不同,粒径范围为146±4.71nm至715±7.36nm,zeta电位为-12.45±2.78mV至-30.78±2.83mV,PDI为0.17±0.013至0.51±0.023,包封率为37.78±2.78%至87.45±4.78%,药物累积渗透量为117±4.77μg/cm至275±5.67μg/cm。为确定最佳抗癌制剂,将DTIC-SLNs-8纳米颗粒与优化浓度的结冷胶(0.01% w/v)混合,并每天两次应用于二甲基苯并蒽(DMBA)诱导的大鼠皮肤肿瘤,持续六周。组织病理学表明,与游离DTIC治疗的大鼠相比,DTIC-SLNs-8治疗的大鼠角化过度、炎症反应和血管生成较少。由于SLNs在皮肤上具有更好的药物保留能力,其开发可能是一种有前景的黑色素瘤治疗方法。与游离DTIC相比,优化后的抗癌制剂DTIC-SLNs-8显示出更高的疗效且副作用最小。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b46/10160449/58ab1bc411e9/fonc-13-1102269-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b46/10160449/72b50f7a52fe/fonc-13-1102269-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b46/10160449/f690b0e9fcfa/fonc-13-1102269-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b46/10160449/a9d8fff088ac/fonc-13-1102269-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b46/10160449/543e6c8d692c/fonc-13-1102269-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b46/10160449/b0dd458d72a6/fonc-13-1102269-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b46/10160449/98e1e3578a2c/fonc-13-1102269-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b46/10160449/20db32f0f42a/fonc-13-1102269-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b46/10160449/81232e5204f5/fonc-13-1102269-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b46/10160449/58ab1bc411e9/fonc-13-1102269-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b46/10160449/72b50f7a52fe/fonc-13-1102269-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b46/10160449/f690b0e9fcfa/fonc-13-1102269-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b46/10160449/a9d8fff088ac/fonc-13-1102269-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b46/10160449/543e6c8d692c/fonc-13-1102269-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b46/10160449/b0dd458d72a6/fonc-13-1102269-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b46/10160449/98e1e3578a2c/fonc-13-1102269-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b46/10160449/20db32f0f42a/fonc-13-1102269-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b46/10160449/81232e5204f5/fonc-13-1102269-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b46/10160449/58ab1bc411e9/fonc-13-1102269-g009.jpg

相似文献

[1]
Dacarbazine-encapsulated solid lipid nanoparticles for skin cancer: physical characterization, stability, activity, histopathology, and immunohistochemistry.

Front Oncol. 2023-4-21

[2]
Formulation, Characterization, and Evaluation of Eudragit-Coated Saxagliptin Nanoparticles Using 3 Factorial Design Modules.

Molecules. 2022-11-3

[3]
Physicochemical Characterization of Chitosan-Decorated Finasteride Solid Lipid Nanoparticles for Skin Drug Delivery.

Biomed Res Int. 2022

[4]
Solid lipid-based nanoparticulate system for sustained release and enhanced in-vitro cytotoxic effect of 5-fluorouracil on skin Melanoma and squamous cell carcinoma.

PLoS One. 2023

[5]
Sustained release of piroxicam from solid lipid nanoparticle as an effective anti-inflammatory therapeutics in vivo.

Drug Dev Ind Pharm. 2017-1

[6]
Effect of liquid-to-solid lipid ratio on characterizations of flurbiprofen-loaded solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) for transdermal administration.

Drug Dev Ind Pharm. 2016-8

[7]
Naringenin-loaded solid lipid nanoparticles: preparation, controlled delivery, cellular uptake, and pulmonary pharmacokinetics.

Drug Des Devel Ther. 2016-3-1

[8]
Tacrolimus-Loaded Solid Lipid Nanoparticle Gel: Formulation Development and In Vitro Assessment for Topical Applications.

Gels. 2022-2-18

[9]
Skin Delivery and in Vitro Biological Evaluation of Trans-Resveratrol-Loaded Solid Lipid Nanoparticles for Skin Disorder Therapies.

Molecules. 2016-1-20

[10]
The design of naproxen solid lipid nanoparticles to target skin layers.

Colloids Surf B Biointerfaces. 2016-9-1

引用本文的文献

[1]
Local Chemotherapy of Skin Pre-Neoplastic Lesions and Malignancies from the Perspective of Current Pharmaceutics.

Pharmaceutics. 2025-8-1

[2]
Development of a Versatile Nanostructured Lipid Carrier (NLC) Using Design of Experiments (DoE)-Part II: Incorporation and Stability of Butamben with Different Surfactants.

Pharmaceutics. 2024-6-27

[3]
Nanotechnology as a Promising Method in the Treatment of Skin Cancer.

Int J Mol Sci. 2024-2-10

本文引用的文献

[1]
Sonodynamic Therapy Using Dacarbazine-Loaded AuSiO Nanoparticles for Melanoma Treatment: An In-Vitro Study on the B16F10 Murine Melanoma Cell Line.

Ultrasound Med Biol. 2022-6

[2]
Green synthesis of PEG-coated MIL-100(Fe) for controlled release of dacarbazine and its anticancer potential against human melanoma cells.

Int J Pharm. 2022-4-25

[3]
Development and Characterization of Stingless Bee Propolis Properties for the Development of Solid Lipid Nanoparticles for Loading Lipophilic Substances.

Int J Biomater. 2021-5-28

[4]
Uncertainties that threaten the benefit/risk balance in early treatment lines for advanced or metastatic soft tissue sarcoma.

Future Oncol. 2021-7

[5]
Polymeric micelles in cancer therapy: State of the art.

J Control Release. 2021-4-10

[6]
SEOM Clinical Guideline of management of soft-tissue sarcoma (2020).

Clin Transl Oncol. 2021-5

[7]
Fluorescence-based method for sensitive and rapid estimation of chlorin e6 in stealth liposomes for photodynamic therapy against cancer.

Spectrochim Acta A Mol Biomol Spectrosc. 2021-1-5

[8]
A Comprehensive Review on Nanotechnology-Based Innovations in Topical Drug Delivery for the Treatment of Skin Cancer.

Curr Pharm Des. 2020

[9]
Optimized Nanostructured Lipid Carriers Integrated into In Situ Nasal Gel for Enhancing Brain Delivery of Flibanserin.

Int J Nanomedicine. 2020-7-24

[10]
Transdermal siRNA delivery by pH-switchable micelles with targeting effect suppress skin melanoma progression.

J Control Release. 2020-6-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索