Li Shasha, Huang He, Shao Lei, Wang Jianfang
Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
Shenzhen JL Computational Science and Applied Research Institute, Shenzhen 518109, China.
ACS Nano. 2021 Jul 27;15(7):10759-10768. doi: 10.1021/acsnano.1c02627. Epub 2021 Jun 17.
Plasmonic nanoparticles can concentrate electromagnetic fields at the nanoscale and function as a powerful intermediary to enhance light-matter interactions. They have been widely employed for solar energy harvesting, photocatalysis, medicine, sensing, imaging, spectroscopy, optics, and optoelectronics. In this Perspective, we provide a brief overview of research progress in the utilization of excited plasmon energy, with emphasis on the charge- and energy-transfer processes. We discuss important factors that affect the charge- and energy-transfer efficiencies and present open questions and major challenges in the efficient utilization of excited plasmon energy.
等离子体纳米粒子可以在纳米尺度上集中电磁场,并作为增强光与物质相互作用的强大媒介。它们已被广泛应用于太阳能收集、光催化、医学、传感、成像、光谱学、光学和光电子学等领域。在这篇综述中,我们简要概述了利用激发等离子体能量的研究进展,重点关注电荷和能量转移过程。我们讨论了影响电荷和能量转移效率的重要因素,并提出了在有效利用激发等离子体能量方面存在的开放性问题和主要挑战。